Phytochemical profiling using HR-LCMS and evaluation of the in vitro antioxidant and antidiabetic potential of hydroalcoholic extract of Ipomoea cairica leaves
"HR-LCMS Profiling and Antioxidant, Antidiabetic Evaluation of Ipomoea cairica Leaf Extract"
Keywords:
Anti diabetic, DPPH, Superoxide, Alpha Glucosidase, HR-LCMSAbstract
ABSTRACT:
Aim: This paper examines the phytochemical composition and biological functions of Ipomoea cairica leaf hydroalcoholic extract (HEIC), which is a perennial herb traditionally used in the treatment of inflammation, diarrhea and febrile rashes.
Material and Methods: A range of bioactive compounds was detected with the help of High-Resolution Liquid Chromatography-Mass Spectrometry (HR-LCMS), among which flavonoid and alkaloid compounds, phenolic acids, and glycosides are well-known as antioxidants and antidiabetic.
Results: HEIC in vitro antioxidant capacity was assessed using a series of assays which showed that the solution has a dose-dependent radical-scavenging activity, but the activity of this compound is lower than the one of ascorbic acid. More so, the extract had moderate inhibitory effects on alpha-amylase and alpha-glucosidase enzymes with IC50 values of 130.67 µg/mL and 212 µg/mL, respectively, suggesting its possible clinical use in the control of postprandial glucose concentration.
Discussion and Conclusion: Major phytochemicals, including quercetin 3-rhamanoside-7-glucoside, rutin, physalis K, and 1,4-Di-O-caffeoylquinic acid, were associated with the therapeutic value of the extract. These results support conventional uses of Ipomoea cairica in herbal medicine and emphasize its potential in preparation of natural antioxidants, and antidiabetic agents.
Downloads
References
1. Ademiluyi, A. O., & Oboh, G. (2011). Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimental and Toxicologic Pathology, 63(5), 453–458. https://doi.org/10.1016/j.etp.2010.03.002
2. Al-Amiery, A. A., Al-Majedy, Y. K., Ibrahim, H. H., & Abood, H. G. (2015). Antioxidant, antibacterial, and antioxidant activities of new metal complexes derived from coumarin Schiff base. Scientific World Journal, 2015, Article ID 453205. https://doi.org/10.1155/2015/453205
3. Atta, E. M., Mohamed, N. H., & Abdelgawad, A. A. M. (2017). Antioxidants: An overview on the natural and synthetic types. European Chemical Bulletin, 6(8), 365–375. https://doi.org/10.17628/ecb.2017.6.365-375
4. Austin, D. F., & Huaman, Z. (1996). A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon, 45(1), 3–38. https://doi.org/10.2307/1222585
5. Bailey, C. J., Turner, S. L., & Wadsworth, J. (1989). Insulin release and glucose disposal in obese hyperglycaemic (ob/ob) mice treated with the α-glucosidase inhibitor acarbose. British Journal of Pharmacology, 98(1), 237–242. https://doi.org/10.1111/j.1476-5381.1989.tb11990.x
6. Banani Mondal, Sara Farheen, Mainak Mal, Nilanjan Sarkar, Amrita Kumari, and Mainak Chakraborty. “Phytochemical Characterization and in Vitro Antioxidant, in Vitro Antidiabetic Activity of Manilkara Hexandra Seed Extract”. APJHS ,2022, 5-9, doi:10.21276/apjhs.2022.9.3.02.
7. Chelladurai, G., & Chinnachamy, C. (2018). In vitro alpha-amylase and alpha-glucosidase inhibitory effects of Gymnema sylvestre. International Journal of Green Pharmacy, 12(2), S305–S309. https://doi.org/10.22377/ijgp.v12i02.1649
8. Chakraborty M, Bala A, Haldar PK. Flavonoid enriched fraction of Campylandra aurantiaca attenuates carbon tetrachloride induced oxidative DNA damage in mouse peritoneal macrophages in animal model. Curr Drug Discov Technol. 2017;14(4)270-276. 2017;
9. Dongare, P. M., Yadav, S. R., & Killedar, S. G. (2021). Screening of phytochemicals and evaluation of antioxidant and antibacterial activity of Ipomoea cairica. Asian Journal of Pharmaceutical and Clinical Research, 14(4), 1–6. https://doi.org/10.22159/ajpcr.2021.v14i4.41037
10. Ferreira, P. M. P., Carvalho, A. F. U., Farias, D. F., & Fernandes, F. C. B. (2006). Larvicidal activity of Ipomoea cairica extract against Aedes aegypti larvae. Memórias do Instituto Oswaldo Cruz, 101(2), 207–210. https://doi.org/10.1590/S0074-02762006000200013
11. Fridovich, I. (1986). Biological effects of the superoxide radical. Archives of Biochemistry and Biophysics, 247(1), 1–11. https://doi.org/10.1016/0003-9861(86)90526-6
12. Gulcin, I. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94, 651–715. https://doi.org/10.1007/s00204-020-02689-3
13. Halliwell, B. (1994). Free radicals and antioxidants: A personal view. Nutrition Reviews, 52(8), 253–265. https://doi.org/10.1111/j.1753-4887.1994.tb01453.x
14. Halliwell, B. (1996). Antioxidants in human health and disease. Annual Review of Nutrition, 16(1), 33–50. https://doi.org/10.1146/annurev.nu.16.070196.000341
15. Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481–504. https://doi.org/10.1016/S0031-9422(00)00235-1
16. Hostettmann, K., Marston, A., Ndjoko, K., & Wolfender, J. L. (2001). The potential of African plants as a source of drugs. Current Organic Chemistry, 5(10), 919–938. https://doi.org/10.2174/1385272013375572
17. Ilesanmi, O. R., & Inala, O. J. (2022). Ipomoea cairica leaf extracts possess potential antimicrobial and antioxidant activities. Journal of Pharmacognosy and Phytotherapy, 14(1), 15–23. https://doi.org/10.5897/JPP2021.0596
18. Ilesanmi, O. R., Inala, O. J., & Olatunji, O. T. (2022). Evaluation of phytochemical, antioxidant and antimicrobial activities of the leaf and stem bark of Ipomoea cairica (L.) Sweet. African Journal of Biotechnology, 21(3), 62–69. https://doi.org/10.5897/AJB2021.17317
19. Khurana, S., Vohora, S. B., & Dhar, A. (2018). Antioxidants and their role in biological functions: An overview. Indian Journal of Pharmacology, 50(6), 312–321. https://doi.org/10.4103/ijp.IJP_148_18
20. Kumari A, Chakraborty M, Sarkar N, Bose SK, Roy K, Karunakaran G. Synergistic Immunomodulatory Activity of Aqueous Root Extract of Asparagus Racemosus Willd and Ethanol Whole Plant Extract of Boerhavia Diffusa Linn. Asian J Pharm Clin Res. 2021;:120–3.
21. Karmakar I, Haldar S, Chakraborty M, Dewanjee S, Haldar PK. In vitro antioxidant and cytotoxic activity of Zanthonitrile isolated from Zanthoxylum alatum. J Appl Pharm Sci. 2016;6(6):119–22.
22. Lin, C. N., Yen, M. H., Li, C. Y., Kuo, S. C., & Yeh, H. Z. (2008). Anti-inflammatory and analgesic activities of 4-phenyl coumarins. Archives of Pharmacal Research, 31(5), 620–625. https://doi.org/10.1007/s12272-001-1180-6
23. Lima, E. D., & Braz-Filho, R. (1997). Chemical constituents of Ipomoea cairica. Revista Brasileira de Farmacognosia, 7(1), 41–45.
24. Ma, S., Cao, J., & Wen, Y. (2020). Allelopathic potential and secondary metabolites of invasive Ipomoea cairica. Weed Biology and Management, 20(2), 74–82. https://doi.org/10.1111/wbm.12233
25. Malviya, N., Jain, S., & Malviya, S. (2010). Antidiabetic potential of medicinal plants. Acta Poloniae Pharmaceutica – Drug Research, 67(2), 113–118.
26. Parekh, J., & Chanda, S. (2007). In vitro antibacterial activity of the crude methanol extract of Woodfordia fruticosa Kurz. flower (Lythraceae). Brazilian Journal of Microbiology, 38(2), 204–207. https://doi.org/10.1590/S1517-83822007000200008
27. Ralte, L., & Sameul, C. (2014). Phytochemical constituents and medicinal properties of Ipomoea species (Convolvulaceae). International Journal of Pharmacy and Pharmaceutical Sciences, 6(10), 46–50.
28. Singh, R., Bhardwaj, G., & Singh, P. (2018). Natural antioxidants for health promotion and disease prevention. Journal of Pharmacognosy and Phytochemistry, 7(1), 2035–2040.
29. Srivastava, A., & Shukla, R. K. (2015). Ipomoea cairica (L.) Sweet: A potential medicinal plant. International Journal of Ayurvedic and Herbal Medicine, 5(5), 1809–1814.
30. Sun, H., Saeed, M., & Wang, D. (2016). Natural antioxidants in diabetes treatment: Recent development and future perspective. Current Medicinal Chemistry, 23(8), 1–15. https://doi.org/10.2174/0929867323666160314114910
31. Tabassum, N., & Ahmad, F. (2012). Role of natural herbs in the treatment of diabetes. Pharmacognosy Reviews, 6(11), 45–51. https://doi.org/10.4103/0973-7847.95849
32. Thomas, J., Nishitha, B., & Elizabeth, A. (2004). Antioxidant and larvicidal activity of Ipomoea cairica L. Indian Journal of Natural Products and Resources, 3(2), 179–182.
33. Wink, M., Alfermann, A. W., Franke, R., Keil, B., Kuhnt, M., Ritter, H., & Roos, B. (2005). Sustainable bioproduction of phytochemicals by plant in vitro cultures: Anticancer agents. Current Medicinal Chemistry, 12(12), 1341–1358. https://doi.org/10.2174/0929867053764637
34. Xiong, Y., Zhang, P., Warner, R. D., & Fang, Z. (2020). Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Comprehensive Reviews in Food Science and Food Safety, 18(6), 2025–2046. https://doi.org/10.1111/1541-4337.12506
Published
How to Cite
Issue
Section
Copyright (c) 2025 Arvind Kumar, Mrinmoy Basak

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.