ANTI-INFLAMMATORY POTENTIAL EVALUATION AND MORPHOLOGICAL CHARACTERISATION OF NANOHYDROXYAPATITE INCORPORATED GREEN SYNTHESIZED NANOCOMPOSITE- AN IN- VITRO STUDY
Keywords:
Anti-inflammatory, Hydroxyapatite, Green chemistry, Nanocomposites, Nanoparticle.Abstract
Abstract
Objective: This research intended to investigate the anti-inflammatory capabilities of nHAP based nanocomposites developed through green synthesis from citrus fruit peels.
Methods: The experimental design involved the green synthesis of nHAP mediated chitosan-based nanocomposites from Citrus reticulata and Citrus limonum peel extract. The anti-inflammatory potential was assessed using Bovine serum albumin denaturation (BSA) assay, Membrane stabilisation assay (MSA) and Egg albumin denaturation (EA) assays. The developed nanocomposite was also subjected to characterisation using X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) analysis.
Results: The successful generation of the nanocomposite based on nHAP was carried out. The generated nanocomposite exhibited anti-inflammatory behaviour. The characterisation using XRD and FTIR analysis also confirmed the presence of nHAP particles from the green precursors.
Conclusion: The Citrus reticulata and Citrus limonum peel extract mediated nHAP based nanocomposite exhibited potential anti-inflammatory effects its suggested use in biomedical applications.
Downloads
References
1. Pahwa R, Goyal A, Jialal I. Chronic inflammation [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan– [updated 2023 Aug 7; cited 2025 Oct 13]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK493173/ PMID: 29630225.
2. Patrignani P, Tacconelli S, Bruno A, Sostres C, Lanas A. Managing the adverse effects of nonsteroidal anti-inflammatory drugs. Expert Rev Clin Pharmacol. 2011 Sep;4(5):605–21. doi: 10.1586/ecp.11.36. PMID: 22114888.
3. Yu S, Chen Z, Zeng X, Chen X, Gu Z. Advances in nanomedicine for cancer starvation therapy. Theranostics. 2019 Oct 17;9(26):8026–47. doi: 10.7150/thno.38261. PMID: 31754379; PMCID: PMC6857045.
4. Li S, Xiaowen Y, Yang Y, Liu L, Sun Y, Liu Y, Yin L, Chen Z. Osteogenic and anti-inflammatory effect of the multifunctional bionic hydrogel scaffold loaded with aspirin and nano-hydroxyapatite. Front Bioeng Biotechnol. 2023 Jan 24;11:1105248. doi: 10.3389/fbioe.2023.1105248. Erratum in: Front Bioeng Biotechnol. 2023 Mar 30;11:1179873. doi: 10.3389/fbioe.2023.1179873. PMID: 36761294; PMCID: PMC9902883.
5. Belal A, Mahmoud R, Mohamed EE, Farghali A, Abo El-Ela FI, Gamal A, et al. A novel hydroxyapatite/vitamin B12 nanoformula for treatment of bone damage: preparation, characterization, and anti-arthritic, anti-inflammatory, and antioxidant activities in chemically induced arthritic rats. Pharmaceuticals. 2023;16(4):551. doi: 10.3390/ph16040551.
6. Lakshmi AS, Dhanraj MG, Rajeshkumar S. In vitro anti-inflammatory activity and cytotoxic effect of Citrus reticulata- and Citrus limonum-incorporated hydroxyapatite nanoparticles. Plant Sci Today [Internet]. 2025 Feb 5 [cited 2025 Oct 13];12(1). Available from: https://doi.org/10.14719/pst.3697
7. Q, Zeeshan M, Khan S, Ali H. Biomimetic hydroxyapatite as potential polymeric nanocarrier for the treatment of rheumatoid arthritis. J Biomed Mater Res A. 2019 Dec;107(12):2595–600. doi: 10.1002/jbm.a.36765. Epub 2019 Aug 19. PMID: 31373751.
8. Ajithan SL, Ganapathy D, Shanmugam R, Dathan PC. Role of nanoparticles and nanocomposites in bone regeneration. Trends Biomater Artif Organs. 2024;38(3):195–205. doi: 10.5281/zenodo.14824410.
9. Li P, Yang X, Yang Y, He H, Chou CK, Chen F, Pan H, Liu L, Cai L, Ma Y, et al. Synergistic effect of all-trans-retinal and triptolide encapsulated in an inflammation-targeted nanoparticle on collagen-induced arthritis in mice. J Control Release. 2020;319:87–103. doi: 10.1016/j.jconrel.2019.12.025.
10. Luo LJ, Jian HJ, Harroun SG, Lai JY, Unnikrishnan B, Huang CC. Targeting nanocomposites with anti-oxidative/inflammatory/angiogenic activities for synergistically alleviating macular degeneration. Appl Mater Today. 2021;24:101156. doi: 10.1016/j.apmt.2021.101156.
11. Nabipour Z, Nourbakhsh MS, Baniasadi M. Evaluation of ibuprofen release from gelatin/hydroxyapatite/polylactic acid nanocomposites. Iran J Pharm Sci [Internet]. 2018 Jan 15 [cited 2025 Oct 13];14(1):75–84. Available from: https://doi.org/10.22037/ijps.v14.40674
12. Huston M, DeBella M, DiBella M, Gupta A. Green synthesis of nanomaterials. Nanomaterials (Basel). 2021 Aug 21;11(8):2130. doi: 10.3390/nano11082130. PMID: 34443960; PMCID: PMC8400177.
13. Denaro M, Smeriglio A, Trombetta D. Antioxidant and anti-inflammatory activity of citrus flavanones mix and its stability after in vitro simulated digestion. Antioxidants (Basel). 2021 Jan 20;10(2):140. doi: 10.3390/antiox10020140. PMID: 33498195; PMCID: PMC7908975.
14. Shi YS, Zhang Y, Li HT, Wu CH, El-Seedi HR, Ye WK, et al. Limonoids from Citrus: Chemistry, anti-tumor potential, and other bioactivities. J Funct Foods. 2020;75:104213. doi: 10.1016/j.jff.2020.104213.
15. Mohapatra S, Leelavathi L, Shanmugam R, Sri D, Prabakar J. Assessment of cytotoxicity, anti-inflammatory and antioxidant activity of zinc oxide nanoparticles synthesized using clove and cinnamon formulation – an in-vitro study. J Evol Med Dent Sci. 2020;9(22):1859–64. doi: 10.14260/jemds/2020/405.
16. Ameena M, Meignana AI, Ramalingam K, Rajeshkumar S. Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of chitosan thiocolchicoside-lauric acid nanogel. Cureus. 2023;15:e46003. doi: 10.7759/cureus.46003.
17. Li W, Bai L, Ming K, Zheng S. Plasticity dependence on amorphous continuity in Fe-SiOC dual-phase nanocomposites. J Mater Sci Technol. 2023;173. doi: 10.1016/j.jmst.2023.08.005.
18. Tsuji T, Onuma K, Yamamoto A, Iijima M, Shiba K. Direct transformation from amorphous to crystalline calcium phosphate facilitated by motif-programmed artificial proteins. Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16866–70. doi: 10.1073/pnas.0804277105. Epub 2008 Oct 28. PMID: 18957547; PMCID: PMC2575226.
19. Dathan PC, Nallaswamy D, Shanmugham R, Joseph S, Ismail S, Munusamy T. In vitro evaluation of anti-inflammatory, anti-oxidant activity of pomegranate peel extract mediated calcium sulfate nanoparticles. Med J Malaysia. 2025;80(Suppl 1).
20. Malleshappa P, Kumaran RC, Venkatarangaiah K, Parveen S. Peels of Citrus fruits: A potential source of anti-inflammatory and anti-nociceptive agents. Pharmacogn J. 2018;10(6 Suppl):s172–8.
21. Noah NM, Ndangili PM. Green synthesis of nanomaterials from sustainable materials for biosensors and drug delivery. Sensors Int. 2022;3:100166. doi: 10.1016/j.sintl.2022.100166.
22. Keerthana B, Karthikeyan M. Anti-inflammatory activity of Vetiveria zizanoides-mediated silver nanoparticles. Cuest Fisioter. 2025;54(3):90–102. doi: 10.48047/tnzvrm50.
23. Ganta SSL, Jeevitha M, Preetha S, Rajeshkumar S. Anti-inflammatory activity of dried ginger mediated iron nanoparticles. J Pharm Res Int [Internet]. 2020 Nov 9 [cited 2025 Oct 13];32(28):14–9.
24. Shanmugam KS, Lakshmanan R, Jagadeesan R, Maghimaa M, Hemapriya N, Suresh S. Green synthesis of bimetallic Ag-ZnO nanocomposite using polyherbal extract for antibacterial and anti-inflammatory activity. Chem Phys Impact. 2024;9:100763. doi: 10.1016/j.chphi.2024.100763.
25. Mazaleuskaya LL, Muzykantov VR, FitzGerald GA. Nanotherapeutic-directed approaches to analgesia. Trends Pharmacol Sci. 2021 Jul;42(7):527–50. doi: 10.1016/j.tips.2021.03.007. Epub 2021 Apr 19. PMID: 33883067; PMCID: PMC8195851.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Lakshmi Ajithan S, Dhanraj Ganapathy, Rajeshkumar Shanmugham, Arya Nair R, Revathy C V

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.