

# **International Journal of Applied Pharmaceutics**

ISSN-0975-7058

Vol 16, Issue 4, 2024

**Original Article** 

# ANALYTICAL METHOD DEVELOPMENT, VALIDATION AND SOLUBILITY ESTIMATION OF NICARDIPINE HCL IN VARIOUS OIL SOLVENTS, SURFACTANTS AND COSURFACTANTS

RAHUL Y. PAGAR\*, AVINASH B. GANGURDE

Department of Pharmaceutics, K. B. H. S. S. Trust's Institute of Pharmacy, Malegaon, Nashik-423105, Maharashtra, India, affiliated to Savitribai Phule Pune University, Pune-411007, Maharashtra, India
\*Corresponding author: Rahul Y. Pagar; \*Email: raahulpagar@gmail.com

Received: 29 Apr 2024, Revised and Accepted: 05 Jun 2024

#### **ABSTRACT**

**Objective:** This study is focused on the development of an analytical method and the evaluation of the solubility of Nicardipine HCl (NHCL) in various oil solvents, surfactants, and cosurfactants using the saturated solubility determination method employing UV Spectrophotometry.

**Methods:** Lipophilic solvents such as Caprylic Capric, Soyabean oil, linseed oil, Coconut oil, Sunflower oil, Corn oil, Olive oil, Peanut oil, and Cottonseed oil were utilized, along with surfactants Tween 60 and Tween 80, and cosurfactants PEG 200 and Transcutol HP. Analytical validation parameters, including linearity and range, precision, limit of Detection (LOD), limit of Quantification (LOQ), ruggedness, robustness, and accuracy, were assessed according to the International Council for Harmonisation (ICH) guidelines. The solubility of NHCL in all of the aforementioned solvents was evaluated using the saturated solubility determination method.

Results: Linearity analysis revealed a linear relationship, determined by an  $R^2$  value between concentration and absorbance. Intra-day precision demonstrates method reliability, with all Percent Relative Standard Deviation (%RSD) values ranging between 0.8426 and 1.9417%. LOD and LOQ values ranged between 1.1478 and 8.1632  $\mu$ g/ml and 3.4783 and 24.7368  $\mu$ g/ml, respectively. Ruggedness analysis exhibited good control over external experimental factors, with %RSD between 0.3433 and 1.9183%. Robustness assessment demonstrated consistent performance even with slight changes in environmental conditions, with %RSD between 0.5450 and 1.6443%. Accuracy study indicated % recovery values between 98.53 and 100.89%, suggesting minimal interference from excipients in the formulation.

**Conclusion:** Caprylic Capric, as an oil/triglyceride, exhibited a solubility of 0.94 mg/ml. Tween-80, as a surfactant, showed a solubility of 23.58 mg/ml, and Transcutol HP, as a cosurfactant, demonstrated a solubility of 38.18 mg/ml for NHCL

Keywords: Solubility, Bioavailability, Nicardipine HCl, Caprylic capric, Tween 80, Transcutol HP

© 2024 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/) DOI: https://dx.doi.org/10.22159/ijap.2024v16i4.51264 Journal homepage: https://innovareacademics.in/journals/index.php/ijap

# INTRODUCTION

Nicardipine HCl (NHCL) falls under the category of dihydropyridine derivatives. NHCL represents the monohydrochloride salt of 2,6-dimethyl-5-methoxycarbonyl-3-(2-N-benzyl-methylamino) ethoxycarbonyl-4-(3-nitrophenyl)-1,4 dihydropyridine hydrochloride. This substance presents as a greenish-yellow crystalline powder with a subtle bitter taste and no discernible odour [1].

NHCL is a calcium channel blocker with potent vasodilator and antihypertensive characteristics. It undergoes rapid absorption primarily from the jejunum and ileum, key segments of the digestive tract [2]. It may be administered alone or in combination with an angiotensin-converting enzyme inhibitor. Additionally, NHCL dilates coronary arteries; thereby augmenting blood supply to the myocardium [3-5]. NHCL is classified as a BCS class II drug, indicating high permeability but low solubility. Water solubility significantly affects drug dissolution and bioavailability. Compounds with greater solubility typically exhibit enhanced absorption and increased bioavailability [6-18].

The solubility of BCS class II drugs can be improved through the dry emulsion techniques, employing lyophilization [19-25].

This study focuses on comprehensive exploration of the solubility behaviour of NHCL, an important cardiovascular drug, in a wide range of oil solvents, surfactants, and cosurfactants. By examining the solubility profiles across different solvents, this research will help for enhancing the bioavailability and efficacy of NHCL formulations. Furthermore, the inclusion of surfactants and cosurfactants in the investigation reflects a contemporary approach to pharmaceutical formulation, considering the importance of solubility enhancement techniques in improving drug delivery systems.

Moreover, the analytical method development and validation aspects underscore the rigor and reliability of the analytical techniques employed in quantifying NHCL concentrations. The validation process

ensures the linearity, precision, LOD, LOQ, ruggedness, robustness, and accuracy of the analytical method, thus ensuring the credibility of the experimental results. This contributes to the scientific community by providing a validated analytical method that can be utilized for routine quality control analysis of NHCL formulations.

In essence, this study amalgamates analytical chemistry principles with pharmaceutical formulation science to address the critical need for robust analytical methods and enhanced solubility understanding in the development of NHCL formulations. Its comprehensive approach and scientific rigor make it a valuable contribution to both academia and the pharmaceutical industry, with potential implications for improving therapeutic outcome and patient care.

# MATERIALS AND METHODS

# Materials

NHCL, Caprylic Capric, and Transcutol HP were obtained as gift samples from Subhash Chemical Industries Pvt. ltd. Polyethylene glycol 200 (PEG-200), Tween-60, and Tween-80 were purchased from Vishal Chemicals. The Coconut Oil (Marico limited, Mumbai), Soyabean Oil (Pataldhamal Wadhwani Agri Tech Pvt. ltd.), Linseed Oil (Mahesh Agro Food Industries, Rajasthan), Corn Oil (Cargill India Pvt. ltd., Mumbai), Cottonseed Oil (Ashwin Vanaspati Industries Pvt. ltd.), Olive Oil (V. G. Kannan Foods Pvt. ltd., Mumbai), and Peanut Oil (Nav Maharashtra Agro Industries Pvt. ltd., Pune) were purchased from the suppliers.

## Determination of $\Lambda$ max of NHCL in various solvent

A standard stock solution containing 100  $\mu g/ml$  of NHCL was prepared by dissolving 10 mg of NHCL in Caprylic Capric, Soyabean Oil, Linseed Oil, Coconut Oil, Sunflower Oil, Corn Oil, Olive Oil, Peanut Oil, Cottonseed Oil, Tween-60, Tween-80, PEG-200, and Transcutol HP, and analysed on UV Spectrophotometer between 400-200 nm, and  $\lambda$  max was recorded.

#### Linearity and range

For the linearity study, five different dilutions of NHCL were prepared in each solvent as shown in table 1 and used for calibration curve plot (n=3). The intercept and slope for each solvent used were determined from the calibration curve.

#### Precision

Solutions of dilutions, as shown in table 2, were used to determine precision. Six samples (n=6) of the same concentration were used, and absorbance was recorded. Mean, Standard Deviation (SD), and % RSD were calculated.

Table 1: Solvent and different concentration (µg/ml) used for linearity study

| Solvent         | Concentration (µg/ml)   | Solvent        | Concentration (µg/ml)   |
|-----------------|-------------------------|----------------|-------------------------|
| Caprylic Capric | 100, 150, 200, 250, 300 | Corn Oil       | 50, 100, 150, 200, 250  |
| Linseed Oil     |                         | Peanut Oil     |                         |
| Sunflower Oil   | 50, 75, 100, 125, 150   | Soyabean Oil   | 20, 40, 60, 80, 100.    |
| Olive Oil       | 100, 120, 140, 160, 180 | Cottonseed Oil | 100, 150, 200, 250, 300 |
| Tween-80        | 10, 20, 30, 40, 50      | Tween-60       | 50, 70, 90, 110, 130    |
| PEG-200         | 10, 15, 20, 25, 30      | Transcutol HP  | 20, 40, 60, 80, 100     |

Table 2: Solvent and different concentration (µg/ml) used for precision study

| Concentration (µg/ml) | Solvent                            | Concentration (µg/ml) | Solvent                              |
|-----------------------|------------------------------------|-----------------------|--------------------------------------|
| 200                   | Caprylic Capric and Cottonseed oil | 150                   | Linseed Oil, Corn Oil and Peanut Oil |
| 120                   | Olive Oil                          | 100                   | Coconut Oil                          |
| 90                    | Tween-60                           | 75                    | Sunflower Oil                        |
| 60                    | Soyabean Oil and Transcutol HP     | 30                    | Tween-80 and PEG-200                 |

#### LOD and LOQ

LOD and LOQ were calculated for each used solvent by using formula for

$$LOD = \frac{3.3 \times Standard Deviation}{Slope} LOQ = \frac{10 \times Standard Deviation}{Slope}$$

# Ruggedness

Solutions of dilutions, as shown in table 3, were used to study ruggedness. Two analysts at the same environmental condition and on the same instrument conducted the experiment. Three samples (n=3) of the same concentration were used, and absorbance was recorded mean absorbance, SD, and %RSD were calculated.

Table 3: Solvent and different concentration (µg/ml) used for ruggedness study

| Concentration (µg/ml) | Solvent              | Concentration (µg/ml) | Solvent                                  |
|-----------------------|----------------------|-----------------------|------------------------------------------|
| 200                   | Cottonseed oil       | 150                   | Caprylic Capric, Corn Oil and Peanut Oil |
| 125                   | Sunflower Oil        |                       |                                          |
| 100                   | Linseed Oil          | 120                   | Coconut Oil and Olive Oil                |
| 80                    | Soyabean Oil         | 90                    | Tween-60                                 |
| 30                    | Tween-80 and PEG-200 | 60                    | Transcutol HP                            |

### Robustness

Solutions of dilutions, as shown in table 4, were used to study robustness at two different temperature conditions (Room Temperature-36 °C and 20 °C). Six samples (n=6) of the same concentration were used, and absorbance was recorded. Mean absorbance, SD, and %RSD were calculated.

# Accuracy/% recovery

Three different concentrations of 80%, 100%, and 120% of NHCL in each solvent were prepared using the label claim of the marketed product and bulk NHCL. Three samples (n=3) of each concentration were used, and absorbance was recorded. Mean absorbance, SD, and % Recovery were calculated [26-33].

Table 4: Solvent and different concentration ( $\mu g/ml$ ) used for robustness study

| Concentration (µg/ml) | Solvent              | Concentration (µg/ml) | Solvent                                           |
|-----------------------|----------------------|-----------------------|---------------------------------------------------|
| 200                   | Cottonseed oil       | 150                   | Caprylic Capric, Linseed Oil, Corn Oil and Peanut |
| 120                   | Olive Oil            |                       | Oil                                               |
| 100                   | Coconut Oil          | 90                    | Tween-60                                          |
| 75                    | Sunflower Oil        | 60                    | Transcutol HP and Soyabean Oil                    |
| 30                    | Tween-80 and PEG-200 |                       | •                                                 |

# Saturated solubility study

Excess amounts of the drug were added to 10 ml of an appropriate solvent in glass vials. These vials were then placed on an orbital shaker and subjected to agitation for 48 h at a speed of 50 rpm, maintaining a constant temperature of approximately  $37\pm0.5~^\circ\text{C}$ . Subsequently, the resulting samples were filtered using syringe filters with a pore size of 0.22  $\mu\text{m}$ . The filtrate was collected and appropriately diluted with the same solvent. The absorbance of the drug was then analysed using a UV-Visible Spectrophotometer at the

pre-scanned  $\lambda$ max in the respective solvent (n=3). Finally, the mean absorbance values were converted into concentrations using a standard curve of the drug in the solvent [34].

# RESULTS AND DISCUSSION

### **Linearity and Range**

Table 4 represents the  $\lambda$  max, concentration range, and mean absorbance for different dilutions of the solvents used. Fig. 1 to 13

show concentration-versus-absorbance graphs, along with the corresponding  $R^2$  values for each solvent.

Linearity, studied by the  $R^2$  value, was found to be between 0.9873 and 0.9999, revealing a linear relationship between the

concentration and absorbance of NHCL in various solvents. These values are close to those determined by Naik and Pai (2013) and Nagaraju *et al.* (2014), which were 0.991 and 0.997, respectively [35, 36]. Apridamayanti P. *et al.*(2024), discussed the significance of R<sup>2</sup> value in linearity study [37].

Table 4:  $\lambda$  max, concentration range, and mean absorbance for NHCL in solvents used

| Caprylic Capric (λ max           | x= 349 nm)    |               |               |               |               |
|----------------------------------|---------------|---------------|---------------|---------------|---------------|
| Conc. (µg/ml)                    | 100           | 150           | 200           | 250           | 300           |
| mean Absorbance                  | 0.1601±0.0043 | 0.2615±0.0060 | 0.3527±0.0038 | 0.4464±0.0092 | 0.5480±0.0099 |
| Soyabean Oil (λ max= 34          | 45 nm)        |               |               |               |               |
| Conc. (µg/ml)                    | 20            | 40            | 60            | 80            | 100           |
| mean Absorbance                  | 0.2762±0.0074 | 0.3225±0.0053 | 0.4057±0.0052 | 0.4966±0.0049 | 0.5875±0.0025 |
| Linseed Oil (λ max= 376          | 5 nm)         |               |               |               |               |
| Conc. (µg/ml)                    | 100           | 150           | 200           | 250           | 300           |
| mean Absorbance                  | 0.2092±0.0015 | 0.2891±0.0049 | 0.4248±0.0052 | 0.5749±0.0062 | 0.6894±0.0064 |
| Coconut Oil (\lambda max = 349   | 9 nm)         |               |               |               |               |
| Conc. (µg/ml)                    | 60            | 80            | 100           | 120           | 140           |
| mean Absorbance                  | 0.3628±0.0096 | 0.4668±0.0049 | 0.5403±0.0045 | 0.6195±0.0032 | 0.7248±0.0052 |
| Sunflower Oil ( $\lambda$ max= 3 | 344 nm)       |               |               |               |               |
| Conc. (µg/ml)                    | 50            | 75            | 100           | 125           | 150           |
| mean Absorbance                  | 0.1482±0.0044 | 0.3366±0.0050 | 0.5100±0.0088 | 0.6504±0.0047 | 0.7904±0.0016 |
| Corn Oil (λ max= 376 nr          | n)            |               |               |               |               |
| Conc. (µg/ml)                    | 50            | 100           | 150           | 200           | 250           |
| mean Absorbance                  | 0.1032±0.0029 | 0.2240±0.0053 | 0.3364±0.0047 | 0.3960±0.0045 | 0.5004±0.0082 |
| Olive Oil (λ max.= 330 n         | m)            |               |               |               |               |
| Conc. (µg/ml)                    | 100           | 120           | 140           | 160           | 180           |
| mean Absorbance                  | 0.4038±0.0058 | 0.4570±0.0030 | 0.5118±.0040  | 0.5705±0.0055 | 0.6096±0.0083 |
| Peanut Oil (λ max= 321           | nm)           |               |               |               |               |
| Conc. (µg/ml)                    | 50            | 100           | 150           | 200           | 250           |
| mean Absorbance                  | 0.1321±0.0043 | 0.2802±0.0035 | 0.3811±0.0041 | 0.5141±0.0050 | 0.6165±0.0071 |
| Cottonseed Oil (λ max=           | 366 nm)       |               |               |               |               |
| Conc. (µg/ml)                    | 100           | 150           | 200           | 250           | 300           |
| mean Absorbance                  | 0.1582±0.0046 | 0.2873±0.0061 | 0.3882±0.0072 | 0.5325±0.0083 | 0.6097±0.0076 |
| Tween-60 (λ max= 371             | nm)           |               |               |               |               |
| Conc. (µg/ml)                    | 50            | 70            | 90            | 110           | 130           |
| mean Absorbance                  | 0.1650±0.0059 | 0.2293±0.0095 | 0.2604±0.0076 | 0.3151±0.0072 | 0.3569±0.0066 |
| Tween-80 ( $\lambda$ max= 346    | nm)           |               |               |               |               |
| Conc. (µg/ml)                    | 10            | 20            | 30            | 40            | 50            |
| mean Absorbance                  | 0.1101±0.0047 | 0.3048±0.0073 | 0.4934±0.0076 | 0.6631±0.0073 | 0.8519±0.0080 |
| PEG-200 (λ max= 358 n            |               |               |               |               |               |
| Conc. (µg/ml)                    | 10            | 15            | 20            | 25            | 30            |
| mean Absorbance                  | 0.1026±0.0029 | 0.1582±0.0057 | 0.2220±0.0077 | 0.2850±0.0043 | 0.3579±0.0083 |
| Transcutol HP (λ max= 3          |               |               |               |               |               |
| Conc. (µg/ml)                    | 20            | 40            | 60            | 80            | 100           |
| mean Absorbance                  | 0.2009±0.0058 | 0.4001±0.0093 | 0.6080±0.0099 | 0.8010±0.0094 | 0.9975±0.0030 |

The data is expressed as a mean±SD, n=3

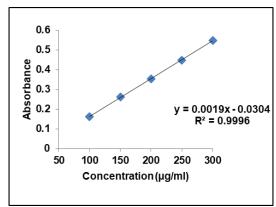
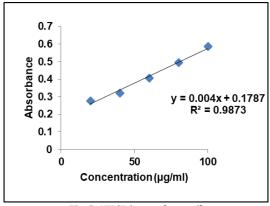
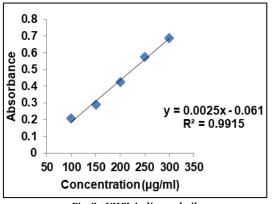


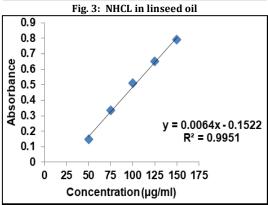

Fig. 1: NHCL in caprylic capric

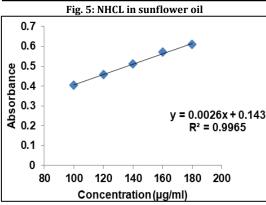
### Precision

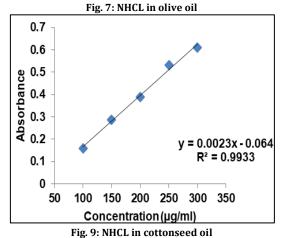
Table 5 shows the Precision study and its % RSD for each solvent used.

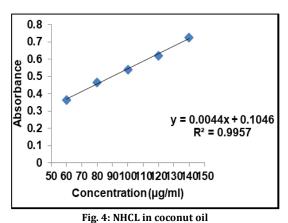
Intra-day precision demonstrates method reliability, with all %RSD values ranging between 0.8426% and 1.9417%. According to Patil

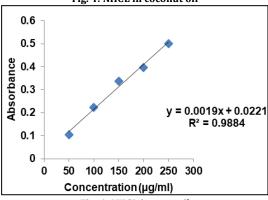



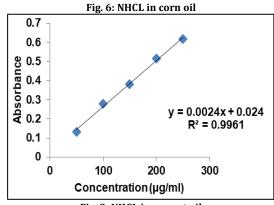


Fig. 2: NHCL in soyabean oil


(2017) and Snyder *et al.* (2010), for a standard solution containing 100% analyte, the % RSD should be less than 2% to meet the acceptable precision criteria. This means that the variability in results obtained from repeated analyses of the standard solution should not exceed 2% of the mean value. When analyzing a sample solution with 1% analyte


content, the acceptable %RSD is specified to be below 2.7%. This slightly relaxed criterion reflects the lower concentration of analyte in the


sample solution, allowing for a slightly higher degree of variability while still maintaining acceptable precision standards [38, 39].













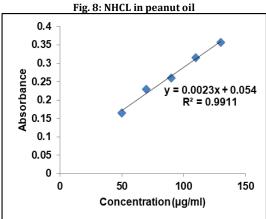
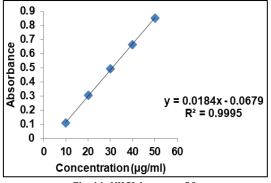





Fig. 10: NHCL in tween 60



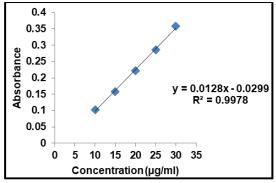



Fig. 11: NHCL in tween 80

Fig. 12: NHCL in PEG200

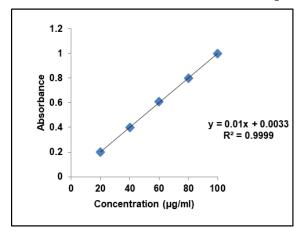



Fig. 13: NHCL in transcutol HP

Table 5: Precision study and its % RSD values for NHCL in solvents used

| Solvent         | Mean absorbance±SD* | %RSD   |
|-----------------|---------------------|--------|
| Caprylic Capric | 0.3519±0.0047       | 1.2259 |
| Soyabean Oil    | 0.4065±0.0037       | 1.6034 |
| Linseed Oil     | 0.2866±0.0047       | 1.3558 |
| Coconut Oil     | 0.5424±0.0039       | 0.8804 |
| Sunflower Oil   | 0.3345±0.0041       | 0.8426 |
| Corn Oil        | 0.3375±0.0037       | 1.1738 |
| Olive Oil       | 0.4570±0.0033       | 1.0597 |
| Peanut Oil      | 0.3842±0.0043       | 1.2025 |
| Cottonseed Oil  | 0.3866±0.0052       | 1.1553 |
| Tween-60        | 0.2638±0.0041       | 1.9417 |
| Tween-80        | 0.4970±0.0064       | 1.1267 |
| PEG-200         | 0.3581±0.0057       | 1.4729 |
| Transcutol HP   | 0.6079±0.0070       | 1.1551 |

<sup>\*</sup>The data is expressed as a mean $\pm$ SD, n=6

Table 6: LOD and LOQ values for NHCL in solvents used

| Solvent         | LOD (µg/ml) | LOQ (μg/ml) |  |
|-----------------|-------------|-------------|--|
| Caprylic Capric | 8.1632      | 24.7368     |  |
| Soyabean Oil    | 3.0525      | 9.2500      |  |
| Linseed Oil     | 6.2405      | 18.8000     |  |
| Coconut Oil     | 2.9250      | 8.8636      |  |
| Sunflower Oil   | 2.1141      | 6.4063      |  |
| Corn Oil        | 6.4263      | 19.4737     |  |
| Olive Oil       | 4.1885      | 12.6923     |  |
| Peanut Oil      | 5.9125      | 17.9167     |  |
| Cottonseed Oil  | 7.4609      | 22.6087     |  |
| Tween-60        | 5.8826      | 17.8261     |  |
| Tween-80        | 1.1478      | 3.4783      |  |
| PEG-200         | 1.4695      | 4.4531      |  |
| Transcutol HP   | 2.3100      | 7.0000      |  |

# LOD and LOQ

Table 6 shows the LOD and LOQ values for each solvent used.

The calculated LOD and LOQ values ranged between 1.1478 and  $8.1632~\mu g/ml$  and 3.4783 and  $24.7368~\mu g/ml$ , respectively. lOD and lOQ are derived from a linear regression analysis applied to a standard curve. These values indicate the method's sensitivity and the lowest concentration of NHCL that can be reliably

detected and quantified with acceptable precision and accuracy [40].

#### Ruggedness

Table 7 shows Ruggedness study and its %RSD value for each solvent used by different analyst.

Ruggedness analysis exhibited good control over external experimental factors, with %RSD between 0.3433% and 1.9183%.

Table 7: Ruggedness study and its %RSD for NHCL in solvents used by different analyst

| Solvent         | Conc. (µg/ml) | Analyst | Mean absorbance±SD* | %RSD   |
|-----------------|---------------|---------|---------------------|--------|
| Caprylic Capric | 150           | I       | 0.2659±0.0039       | 1.4643 |
|                 |               | II      | 0.2608±0.0045       | 1.7066 |
| Soyabean Oil    | 80            | I       | 0.4966±0.0049       | 0.9892 |
| •               |               | II      | 0.4929±0.0030       | 0.6135 |
| Linseed Oil     | 100           | I       | 0.2092±0.0015       | 0.7240 |
|                 |               | II      | 0.2178±0.0037       | 1.7173 |
| Coconut Oil     | 120           | I       | 0.6195±0.0032       | 0.5131 |
|                 |               | II      | 0.6149±0.0041       | 0.6634 |
| Sunflower Oil   | 125           | I       | 0.6504±0.0047       | 0.7298 |
|                 |               | II      | 0.6516±0.0022       | 0.3433 |
| Corn Oil        | 150           | I       | 0.3364±0.0047       | 1.3854 |
|                 |               | II      | 0.3336±0.0052       | 1.5544 |
| Olive Oil       | 120           | I       | 0.4570±0.0030       | 0.6476 |
|                 |               | II      | 0.4529±0.0034       | 0.7594 |
| Peanut Oil      | 150           | I       | 0.3811±0.0041       | 1.0768 |
|                 |               | II      | 0.3836±0.0022       | 0.5640 |
| Cottonseed Oil  | 200           | I       | 0.3882±0.0072       | 1.8570 |
|                 |               | II      | 0.3840±0.0050       | 1.3091 |
| Tween-60        | 90            | I       | 0.2604±0.0023       | 0.8498 |
|                 |               | II      | 0.2597±0.0050       | 1.9183 |
| Tween-80        | 30            | I       | 0.4934±0.0076       | 1.5419 |
|                 |               | II      | 0.4875±0.0051       | 1.0368 |
| PEG-200         | 30            | I       | 0.3583±0.0037       | 1.0236 |
|                 |               | II      | 0.3563±0.0044       | 1.2255 |
| Transcutol HP   | 60            | I       | 0.6080±0.0099       | 1.6276 |
|                 |               | II      | 0.6090±0.0046       | 0.7473 |

<sup>\*</sup>The data is expressed as a mean±SD, n=3

### Robustness

Table 8 shows Robustness study and its % RSD of each solvent used at two different temperature conditions.

Robustness assessment demonstrated consistent performance even with slight changes in environmental conditions, with %RSD between 0.5450% and 1.6443%. The %RSD values fell within the acceptable range, indicating its reliability [41, 42].

Table 8: Robustness study and its %RSD for NHCL in solvents used at two different temperature conditions

| Solvent         | Conc. (µg/ml) | Temperature | Mean absorbance±SD* | %RSD   |
|-----------------|---------------|-------------|---------------------|--------|
| Caprylic Capric | 150           | Room Temp.  | 0.2525±0.0029       | 1.1617 |
|                 |               | 20 °C       | 0.2547±0.0037       | 1.4625 |
| Soyabean Oil    | 60            | Room Temp.  | 0.4134±0.0036       | 0.8730 |
|                 |               | 20 °C       | 0.4065±0.0037       | 0.8987 |
| Linseed Oil     | 150           | Room Temp.  | 0.2934±0.0034       | 1.1455 |
|                 |               | 20 °C       | 0.2866±0.0047       | 1.6443 |
| Coconut Oil     | 100           | Room Temp.  | 0.5489±0.0047       | 0.8336 |
|                 |               | 20 °C       | 0.5424±0.0039       | 0.7110 |
| Sunflower Oil   | 75            | Room Temp.  | 0.3402±0.0041       | 1.2141 |
|                 |               | 20 °C       | 0.3345±0.0041       | 1.2257 |
| Corn Oil        | 150           | Room Temp.  | 0.3446±0.0039       | 1.1389 |
|                 |               | 20 °C       | 0.3375±0.0037       | 1.0970 |
| Olive Oil       | 120           | Room Temp.  | 0.4573±0.0025       | 0.5450 |
|                 |               | 20 °C       | 0.4570±0.0033       | 0.7281 |
| Peanut Oil      | 150           | Room Temp.  | 0.3872±0.0024       | 0.6128 |
|                 |               | 20 °C       | 0.3842±0.0043       | 1.1274 |
| Cottonseed Oil  | 200           | Room Temp.  | 0.3888±0.0044       | 1.1197 |
|                 |               | 20 °C       | 0.3866±0.0052       | 1.3468 |
| Tween-60        | 90            | Room Temp.  | 0.2536±0.0035       | 1.3889 |
|                 |               | 20 °C       | 0.2627±0.0041       | 1.5437 |
| Tween-80        | 30            | Room Temp.  | 0.4981±0.0056       | 1.1293 |
|                 |               | 20 °C       | 0.4970±0.0064       | 1.2807 |
| PEG-200         | 30            | Room Temp.  | 0.3560±0.0032       | 0.8947 |
|                 |               | 20 °C       | 0.3581±0.0057       | 1.5958 |
| Transcutol HP   | 60            | Room Temp.  | 0.6109±0.0039       | 0.6429 |
|                 |               | 20 °C       | 0.6079±0.0070       | 1.1490 |

<sup>\*</sup>The data is expressed as a mean±SD, n=6

## Accuracy/% recovery

Table 9 shows the % recovery values for each solvent used at 80%, 100% and 120% concentrations.

The accuracy study indicated % recovery values between 98.53% and 100.89%, suggesting minimal interference from excipients in the formulation. The capability to precisely recover known concentrations of the drug from the sample solution enhances confidence in the accuracy and suitability of the method [43].

# Solubility estimation

Table 10 shows the solubility of NHCL in each solvent used.

Among the oils/triglycerides, Caprylic Capric exhibits the highest solubility, followed by coconut oil, soyabean oil, linseed oil, peanut oil, sunflower oil, olive oil, corn oil, and cottonseed oil, in descending order. As for surfactants, Tween-80 demonstrates the highest solubility, followed by Tween-60. Among the cosurfactants, Transcutol HP displays the highest solubility, followed by PEG-200.

Table 9: % recovery values for NHCL in solvents used at 80%, 100% and 120% concentrations

| Solvent         | Concentration    | Mean conc. (μg/ml)±SD* | % Recovery |
|-----------------|------------------|------------------------|------------|
| Caprylic Capric | 180 μg/ml (80%)  | 179.0180±2.1862        | 99.45      |
|                 | 200 μg/ml (100%) | 199.0042±1.9279        | 99.94      |
|                 | 220 μg/ml (120%) | 219.8057±1.7199        | 99.91      |
| Soyabean Oil    | 180 μg/ml (80%)  | 179.7038±1.9667        | 99.84      |
|                 | 200 μg/ml (100%) | 199.5064±0.5552        | 99.75      |
|                 | 220 μg/ml (120%) | 219.7607±1.1004        | 99.89      |
| Linseed Oil     | 180 μg/ml (80%)  | 179.1205±1.9218        | 99.51      |
|                 | 200 μg/ml (100%) | 200.1043±2.0082        | 100.05     |
|                 | 220 μg/ml (120%) | 219.9647±1.0542        | 99.98      |
| Coconut Oil     | 180 μg/ml (80%)  | 181.5981±1.3291        | 100.89     |
|                 | 200 μg/ml (100%) | 199.6997±1.1405        | 99.85      |
|                 | 220 μg/ml (120%) | 220.3178±1.1644        | 100.14     |
| Sunflower Oil   | 180 μg/ml (80%)  | 177.3564±0.3345        | 98.53      |
|                 | 200 μg/ml (100%) | 198.6161±1.9179        | 99.31      |
|                 | 220 μg/ml (120%) | 218.4052±1.4161        | 99.28      |
| Corn Oil        | 180 μg/ml (80%)  | 178.6710±1.4671        | 99.26      |
|                 | 200 μg/ml (100%) | 199.5223±1.4236        | 99.76      |
|                 | 220 μg/ml (120%) | 221.8568±1.7821        | 100.84     |
| Olive Oil       | 180 μg/ml (80%)  | 180.2235±1.3469        | 100.12     |
|                 | 200 μg/ml (100%) | 200.1447±1.0870        | 100.07     |
|                 | 220 μg/ml (120%) | 221.0310±1.0095        | 100.47     |
| Peanut Oil      | 180 μg/ml (80%)  | 178.6482±0.4795        | 99.25      |
|                 | 200 μg/ml (100%) | 199.9764±2.0900        | 99.99      |
|                 | 220 μg/ml (120%) | 219.8079±1.3022        | 99.91      |
| Cottonseed Oil  | 180 μg/ml (80%)  | 179.6005±2.5452        | 99.78      |
|                 | 200 μg/ml (100%) | 199.3700±1.2449        | 99.69      |
|                 | 220 μg/ml (120%) | 219.5024±1.1784        | 99.77      |
| Tween-60        | 180 μg/ml (80%)  | 179.6705±1.2568        | 99.82      |
|                 | 200 μg/ml (100%) | 199.4661±1.0072        | 99.73      |
|                 | 220 μg/ml (120%) | 219.4320±0.7813        | 99.74      |
| Tween-80        | 36 µg/ml (80%)   | 35.9756±0.2878         | 99.93      |
|                 | 40 μg/ml (100%)  | 39.5007±0.0753         | 98.75      |
|                 | 44 μg/ml (120%)  | 43.8582±0.0806         | 99.68      |
| PEG-200         | 36 μg/ml (80%)   | 35.9108±0.1903         | 99.75      |
|                 | 40 μg/ml (100%)  | 39.8322±0.2870         | 99.58      |
|                 | 44 μg/ml (120%)  | 43.6019±0.5236         | 99.10      |
| Transcutol HP   | 72 μg/ml (80%)   | 71.7568±0.6422         | 99.66      |
|                 | 80 μg/ml (100%)  | 79.2883±0.2243         | 99.11      |
|                 | 88 μg/ml (120%)  | 87.6689±0.2113         | 99.62      |

<sup>\*</sup>The data is expressed as a mean±SD, n=3

Table 10: Solubility of NHCL in solvents used

| Solvent         | Mean absorbance±SD of unknown* | Concentration of unknown (µg/ml) | Dilution | Solubility (mg/ml) |
|-----------------|--------------------------------|----------------------------------|----------|--------------------|
| Caprylic Capric | 0.1503±0.0040                  | 94.13                            | 10       | 0.94               |
| Soyabean Oil    | 0.4180±0.0057                  | 60.08                            | 10       | 0.60               |
| Linseed Oil     | 0.0674±0.0047                  | 52.80                            | 10       | 0.53               |
| Coconut Oil     | 0.4319±0.0092                  | 74.81                            | 10       | 0.75               |
| Sunflower Oil   | 0.1246±0.0049                  | 43.56                            | 10       | 0.44               |
| Corn Oil        | 0.6887±0.0072                  | 342.64                           | 1        | 0.34               |
| Olive Oil       | 0.2397±0.0081                  | 37.21                            | 10       | 0.37               |
| Peanut Oil      | 0.1370±0.0073                  | 47.38                            | 10       | 0.47               |
| Cottonseed Oil  | 0.6535±0.0077                  | 311.75                           | 1        | 0.31               |
| Tween-60        | 0.4711±0.0054                  | 176.85                           | 100      | 17.69              |
| Tween-80        | 0.3663±0.0058                  | 23.58                            | 1000     | 23.58              |
| PEG-200         | 0.2924±0.0073                  | 25.26                            | 1000     | 25.26              |
| Transcutol HP   | 0.3839±0.0069                  | 38.18                            | 1000     | 38.18              |

<sup>\*</sup>The data is expressed as a mean $\pm$ SD, n=3

#### CONCLUSION

Analytical method validation for each solvent was successfully conducted in accordance with ICH guidelines. Caprylic Capric, as an oil/triglyceride, Tween-80 as a surfactant and Transcutol HP as a cosurfactant, exhibited high solubility for NHCL.

#### **ACKNOWLEDGEMENT**

The authors are thankful to Subhash Chemical Industries Pvt. ltd. for providing the gift sample of Caprylic Capric, and Transcutol HP and KBHSS Trust's Institute of Pharmacy, Malegaon, Nashik for providing facilities to conduct the research.

#### FUNDING

Nil

#### **AUTHORS CONTRIBUTIONS**

Rahul Y. Pagar: Conceptualization, Investigation, Data Analysis, Writing-original Draft.

Avinash B. Gangurde: Supervision, Data Analysis, Writing-reviewing and editing.

#### **CONFLICT OF INTERESTS**

Declared none

### REFERENCES

- Singh BN, Josephson MA. Clinical pharmacology, pharmacokinetics, and hemodynamic effects of nicardipine. Am Heart J. 1990;119(2 Pt 2):427-34. doi: 10.1016/s0002-8703(05)80063-8, PMID 1967896.
- Moursy NM, Afifi NN, Ghorab DM, El-Saharty Y. Formulation and evaluation of sustained release floating capsules of nicardipine hydrochloride. Pharmazie. 2003;58(1):38-43. PMID 12622251.
- Sorkin EM, Clissold SP, Nicardipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in the treatment of angina pectoris, hypertension and related cardiovascular disorders. Drugs. 1987 Apr;33(4):296-345. doi: 10.2165/00003495-198733040-00002, PMID 3297616.
- Selvam RP, Singh AK, Sivakumar T. Transdermal drug delivery systems for antihypertensive drugs-a review. Int J Pharm Biomed Res. 2010;1(1):1-8.
- Elliott WJ, Ram CV. Calcium channel blockers. J Clin Hypertens (Greenwich). 2011;13(9):687-9. doi: 10.1111/j.1751-7176.2011.00513.x, PMID 21896151.
- Chavda HV, Patel CN, Anand IS. Biopharmaceutics classification system. Syst Rev Pharm. 2010;1(1):62. doi: 10.4103/0975-8453.59514.
- 7. Charalabidis A, Sfouni M, Bergstrom C, Macheras P. The biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS): beyond guidelines. Int J Pharm. 2019;566:264-81. doi: 10.1016/j.ijpharm.2019.05.041, PMID 31108154.
- Mehta M, Polli JE, Seo P, Bhoopathy S, Berginc K, Kristan K. Drug Permeability-best practices for biopharmaceutics classification system (BCS)-based biowaivers: a workshop summary report. J Pharm Sci. 2023;112(7):1749-62. doi: 10.1016/j.xphs.2023.04.016, PMID 37142122.
- Mehta S, Joseph NM, Feleke F, Palani S. Improving solubility of bcs class II drugs using solid dispersion: a review. J Drug Delivery Ther 2014;4(3):7-13. doi: 10.22270/jddt.v4i3.844.
- Sarisaltik Yasin D, Teksin ZS. Biopharmaceutics classification system: evaluation on international guidelines and countries. J Lit Pharm Sci. 2018;7(2):160-74. doi: 10.5336/pharmsci.2018-61223.
- Jindal K. Review on solubility: a mandatory tool for pharmaceuticals. Int Res J Pharm. 2017;8(11):11-5. doi: 10.7897/2230-8407.0811210, doi: 10.7897/2230-8407.0811210.
- 12. Kumar A, Rajesh M, Subramanian I. Solubility enhancement techniques: a comprehensive review. World J Bio Pharm Health Sci. 2023;13(3):141-9. doi: 10.30574/wjbphs.2023.13.3.0125.
- Saxena C, Mishra GP. Comprehensive study about solubility enhancement techniques. IJBPAS. 2022;11(9). doi: 10.31032/IJBPAS/2021/11.9.6220.

- 14. Savjani KT, Gajjar AK, Savjani JK. ChemInform abstract: drug solubility: importance and enhancement techniques. ChemInform. 2013;44(26). doi: 10.1002/chin.201326246.
- 15. Coltescu AR, Butnariu M, Sarac I. The importance of solubility for new drug molecules. Biomed Pharmacol J. 2020;13(2):577-83. doi: 10.13005/bpj/1920. doi: 10.13005/bpj/1920.
- Koch Weser J. Bioavailability of drugs (second of two parts). N Engl J Med. 1974;291(10):503-6. doi: 10.1056/NEJM197409052911005, PMID 4604153.
- Stielow M, Witczynska A, Kubryn N, Fijałkowski L, Nowaczyk J, Nowaczyk A. The bioavailability of drugs-the current state of knowledge. Molecules. 2023;28(24):1-19. doi: 10.3390/molecules28248038, PMID 38138529.
- 18. Allam AN, El Gamal S, Naggar V. Bioavailability a pharmaceutical review. Int J Novel Drug Deliv Tech. 2011 Jan;1(1):77-93.
- Patil D, Bachhav R, Gosavi D, Pagar R, Bairagi V. Formulation and evaluation of ezetimibe lyophilized dry emulsion tablets. J Drug Deliv Ther. 2019;9(3):630-5.
- Gaidhani KA, Harwalkar M, Bhambere D, Nirgude PS. Lyophilization/freeze drying-a review. World J Pharm Res. 2015;4(8):516-43.
- 21. Pagar RY, Gangurde AB. Quality by design approach for development of lyophilized dry emulsion tablets (LDET). J Chem Health Risks. 2024;14(2):815-27.
- Dhahir RK, Yassir AB, Al-Kotaji M, Rawas Qalaji M. Formulation and evaluation of olanzapine oral lyophilisates. Pharmakeftiki. 2024;36(1):64-79.
- 23. AlHusban F, Perrie Y, Mohammed AR. Formulation of multiparticulate systems as lyophilised orally disintegrating tablets. Eur J Pharm Biopharm. 2011;79(3):627-34. doi: 10.1016/j.ejpb.2011.05.014, PMID 21693189.
- Shao H, Li B, Li H, Gao L, Zhang C, Sheng H. Novel strategies for solubility and bioavailability enhancement of bufadienolides. Molecules. 2021;27(1):51. doi: 10.3390/molecules27010051, PMID 35011278.
- 25. Corveleyn S, Remon JP. Formulation of a lyophilized dry emulsion tablet for the delivery of poorly soluble drugs. International Journal of Pharmaceutics. 1998;166(1):65-74. doi: 10.1016/S0378-5173(98)00024-6.
- Maleque M, Hasan MR, Hossen F, Safi S. Development and validation of a simple UV spectrophotometric method for the determination of levofloxacin both in bulk and marketed dosage formulations. J Pharm Anal. 2012;2(6):454-7. doi: 10.1016/j.jpha.2012.06.004, PMID 29403782.
- Ferraz RS, Mendonça EA, Silva JP, Cavalcanti IM, Lira Nogueira MC, Galdino SL. Validation of a UV-spectrophotometric analytical method for determination of LPSF/AC04 from inclusion complex and liposomes. Braz J Pharm Sci. 2015;51(1):183-91. doi: 10.1590/S1984-82502015000100018.
- 28. Pathade P, Sumrao A, Sonawane B, Shirode D, Shewale S, Shinde V. Development and validation of stability indicating UV spectrophotometric method for estimation of resveratrol in bulk and tablet dosage form. Int J Drug Deliv Technol. 2024;14(1):385-8. doi: 10.25258/ijddt.14.1.56.
- 29. Rajesh R. Stability-indicating RP-HPLC method development and validation for the analysis of doxepin hydrochloride in bulk and pharmaceutical dosage form. Int J Pharm Pharm Sci. 2024;16(4):27-35. doi: 10.22159/ijpps.2024v16i4.50126.
- 30. Bodke SS, Bhangale CJ, Bhandare SN. Stability indicating UPLC method for estimation of benazepril and hydrochlorothiazide in bulk and combined dosage form. Int J Pharm Pharm Sci. 2024;16(1):22-9. doi: 10.22159/ijpps.2024v16i1.49457.
- 31. Chauhan I, Singh L. Development and validation of a simple and cost-effective UV spectrophotometric method for quantifying linezolid. Int J App Pharm. 2024;16(3):211-6. doi: 10.22159/ijap.2024v16i3.50556.
- 32. Bhavya SK, Nandhini M. Simultaneous method development and validation of combined dosage form dapagliflozin and vildagliptin in bulk and combined tablet dosage form by UV spectrophotometer. Asian J Pharm Clin Res. 2024;17(4):53-9.
- 33. Jothula H, Navuluri S, Mulakayala NR. Stability based HPLC method for cyclophosphamide related substances in finished drug products: development and validation. Int J Curr Pharm Sci. 2024;16(3):42-51. doi: 10.22159/ijcpr.2024v16i3.4061.

- 34. Baka E, Comer JE, Takacs Novak K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J Pharm Biomed Anal. 2008;46(2):335-41. doi: 10.1016/j.jpba.2007.10.030, PMID 18055153.
- 35. Naik AD, Pai SP. Spectrophotometric method for estimation of linezolid in tablet formulation. Asian J Biomed Pharm Sci. 2013;3(21):4-6.
- 36. Nagaraju PT, Sreenivasa Rao M, Ravi Kumar C, Mabhasha D, Venu Gopal K, Murali Krishna NV. UV-spectrophotometric method development and validation for determination of linezolid in pharmaceutical dosage form. Res Rev J Pharm Anal. 2014;3(3):23-7.
- 37. Apridamayanti P, Pratiwi L, Sari R. The development and validation of analytical method for evaluating gallic acid in ethyl acetate fraction (eaf) of snedds formulation: quantitative analysis with *in vitro* assay. Int J App Pharm. 2024:57-65. doi: 10.22159/ijap.2024v16i2.49830.

- 38. Patil PN. HPLC method development-a review. SGVU J Pharm Res. 2017;2(1):243-60.
- 39. Snyder I, Kirkland J, Dolan J. Introduction to modern liquid chromatography. 3<sup>rd</sup> ed. John. NJ: Wileyandsonsinc; 2010.
- Kaur T, Kaur S, Kaur P. Development and validation of UV spectrophotometric methods for determination of gemcitabine hydrochloride in bulk and polymeric nanoparticles. Int J App Pharm. 2017;9(5):60-5. doi: 10.22159/jjap.2017v9i5.19726.
- 41. Shirwar M, Birajdar S, Garad S, Kumbhar S. Development and validation of novel UV-visible spectrophotometric method for estimation of tepotinib in bulk and in pharmaceutical formulation. Int J Pharm Pharm Sci. 2023;15(9):32-6. doi: 10.22159/ijpps.2023v15i9.48431.
- 42. Singh S, Sharma N, Singla YP, Arora S. Development and validation of UV-spectrophotometric method for quantitative estimation of nefopam hydrochloride in polymethacrylate nanospheres. Int J Pharm Pharm Sci. 2015;8(1):414-9.
- 43. Swartz ME, Krull IS. Analytical method validation: accuracy in quantitation. LC GC N Am. 2005;23(1):46-52.