RECENT ADVANCES IN NANO SPONGE TECHNOLOGY: FROM SYNTHESIS TO APPLICATIONS

Authors

  • DEEPIKA Uttaranchal Institute of Pharmaceutical Science, Uttaranchal University, Dehradun-248007, Uttarakhand
  • YOGITA TYAGI Uttaranchal Institute of Pharmaceutical Science, Uttaranchal University, Dehradun-248007, Uttarakhand
  • SRISHTI MORRIS Uttaranchal Institute of Pharmaceutical Science, Uttaranchal University, Dehradun-248007, Uttarakhand
  • ARTI KORI Uttaranchal Institute of Pharmaceutical Science, Shree Dev Bhoomi institute of education, Science and Technology, Dehradun-248007, Uttarakhand

DOI:

https://doi.org/10.22159/ijap.2026v18i1.55012

Keywords:

Nano sponge, Synthesis, Drug delivery, Advancements, Characterization, Environmental remediation

Abstract

ABSTRACT
Nanosponges (NSs) are an emerging class of advanced nanomaterials with wide-ranging applications in healthcare, environmental protection, catalysis, and sensing. Composed of polymers, inorganic compounds, or hybrid structures, they possess a large surface area, adjustable pore size, and tunable chemical properties, allowing precise adaptation to various environments. These features make them highly effective for drug delivery, pollutant adsorption, and catalytic processes. Notably, NSs exhibit exceptional drug loading efficiencies, reaching up to 98%, such as 95% for cyclodextrin-based formulations encapsulating the anticancer drug doxorubicin. Their enhanced performance is primarily due to their porous network and ability to form stable inclusion complexes with hydrophobic molecules. In environmental applications, mesoporous silica NSs have shown high efficacy in removing toxic heavy metals like chromium (VI) and lead (II) from wastewater. To achieve optimal performance, several advanced characterization techniques are employed. In Situ transmission electron microscopy (TEM) allows real-time visualization of structural evolution, while X-ray diffraction (XRD) provides data on crystallinity and phase transitions. Dynamic light scattering (DLS) determines particle size distribution and stability, and Zeta Potential Analysis assesses surface charge interactions. Moreover, fourier transform infrared (FT-IR) Spectroscopy identifies chemical bonding and drug–carrier interactions, whereas thermogravimetric analysis (TGA) provides insights into thermal stability and composition. Ongoing research continues to refine the synthesis, functionalization, and application of nano sponges, enabling the development of more efficient, sustainable, and multifunctional nanostructures that address critical challenges in medicine, environmental remediation, and advanced materials science.

References

1. El-Assal MI, El Assal MI. Nano-sponge novel drug delivery system as carrier of anti-hypertensive drug. Int J Pharm Pharm Sci. 2019 Oct 1;11:47-63.DOI: http://dx.doi.org/10.22159/ijpps.2019v11i10.34812

2. Zhang H, Jin Y, Chi C, Han G, Jiang W, Wang Z, Cheng H, Zhang C, Wang G, Sun C, Chen Y. Sponge particulates for biomedical applications: Biofunctionalization, multi-drug shielding, and theranostic applications. Biomaterials.2021 Jun 1;273:120824https://doi.org/10.1016/j.biomaterials.2021.120824

3. Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases. Advanced materials. 2018 Nov;30(46):1801362. https://doi.org/10.1002/adma.201801362

4. Krabicová I, Appleton SL, Tannous M, Hoti G, Caldera F, Rubin Pedrazzo A, Cecone C, Cavalli R, Trotta F. History of cyclodextrin nanosponges. Polymers. 2020 May 14;12(5):1122.

5. Xu T, Zheng F, Chen Z, Ding Y, Liang Z, Liu Y, Zhu Z, Fong H. Halloysite nanotubes sponges with skeletons made of electrospun nanofibers as innovative dye adsorbent and catalyst support. Chemical Engineering Journal. 2019 Mar 15;360:280-8.https://doi.org/10.1016/j.cej.2018.11.233

6. Wang C, Wang M, Liu L, Huang Y. 3D porous sponge-inspired electrode for high-energy and high-power zinc-ion batteries. ACS Applied Energy Materials. 2021 Feb 2;4(2):1833-9.https://doi.org/10.1021/acsaem.0c02945

7. Pandey P, Purohit D, Dureja H. Nano sponges–A promising novel drug delivery system. Recent patents on nanotechnology. 2018 Dec 1;12(3):180-191.http://dx.doi.org/10.2174/1872210512666180925102842

8. Sadhasivam J, Sugumaran A, Narayanaswamy D. Nano sponges: A potential drug delivery approach. Research Journal of Pharmacy and Technology. 2020 Jul 1;13(7):3442-8.http://dx.doi.org/10.5958/0974-360X.2020.00611.3

9. Alshangiti DM, El-Damhougy TK, Zaher A, Madani M. RSC advances. 2023;13(50):35251-91..https://doi.org/10.1039/D3RA07391B

10. Ur Rahim H, Qaswar M, Uddin M, Giannini C, Herrera ML, Rea G. Nano-enable materials promoting sustainability and resilience in modern agriculture. Nanomaterials. 2021 Aug 15;11(8):2068. https://doi.org/10.3390/nano11082068

11. Singh G, Ramadass K, Sooriyakumar P, Hettithanthri O, Vithange M, Bolan N, Tavakkoli E, Van Zwieten L, Vinu A. Nanoporous materials for pesticide formulation and delivery in the agricultural sector. Journal of Controlled Release. 2022 Mar 1;343:187-206.https://doi.org/10.1016/j.jconrel.2022.01.036

12. Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K. Design and preparation of porous polymers. Chemical reviews. 2012 Jul 11;112(7):3959-4015.

13. Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han CM, Mahapatra C, Kim HW, Knowles JC. Sol–gel based materials for biomedical applications. Progress in materials science. 2016 Apr 1;77:1-79.

14. Abu-Thabit NY, Uwaezuoke OJ, Elella MH. Superhydrophobic nanohybrid sponges for separation of oil/water mixtures. Chemosphere. 2022 May 1;294:133644.

15. Qiao ZA, Chai SH, Nelson K, Bi Z, Chen J, Mahurin SM, Zhu X, Dai S. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates. Nature communications. 2014 Apr 16;5(1):3705.Esen C, Kumru B. Photocatalyst-incorporated cross-linked porous polymer networks. Industrial & Engineering Chemistry Research. 2022 Jul 20;61(30):10616-30

16. Jiang S, Agarwal S, Greiner A. Low‐density open cellular sponges as functional materials. Angewandte Chemie International Edition. 2017 Dec 4;56(49):15520-38..https://doi.org/10.1002/anie.201700684

17. Giacomelli C, Schmidt V, Aissou K, Borsali R. Block copolymer systems: from single chain to self-assembled nanostructures. Langmuir. 2010 Oct 19;26(20):15734-44..https://doi.org/10.1021/acsbiomaterials.4c01897

18. Kyeremateng SO, Busse K, Kohlbrecher J, Kressler J. Synthesis and self-organization of poly (propylene oxide)-based amphiphilic and triphilic block copolymers. Macromolecules. 2011 Feb 8;44(3):583-93.https://doi.org/10.1039/C6NH00077K

19. Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS nano. 2019 Aug 1;13(8):8537-65.https://doi.org/10.3390/molecules26144247

20. Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL. Hierarchically porous materials: synthesis strategies and structure design. Chemical Society Reviews. 2017;46(2):481-558..https://doi.org/10.1039/C6CS00829A

21. Pavlenko V, Żółtowska S, Haruna AB, Zahid M, Mansurov Z, Supiyeva Z, Galal A, Ozoemena KI, Abbas Q, Jesionowski T. A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications. Materials Science and Engineering: R: Reports. 2022 Jun 1;149:100682.https://doi.org/10.1016/j.mser.2022.100682

22. Feng L, Wang KY, Lv XL, Yan TH, Zhou HC. Hierarchically porous metal–organic frameworks: synthetic strategies and applications. National Science Review. 2020 Nov;7(11):1743-58.

23. Qiang R, Wei C, Lin L, Deng X, Zheng T, Wang Q, Gao Y, Zhang Y. Bioinspired: A 3D vertical silicon sponge-inspired construction of organic-inorganic loose mass transfer nanochannels for enhancing properties of polyimide nanofiltration membranes. Separation and Purification Technology. 2021 Mar 15;259:118038.https://doi.org/10.1016/j.seppur.2020.118038

24. Bhatt P, Srivastava A, Rana S. Introduction to metal–organic framework sponges and their synthetic and functionalization strategies. Nanosponges for Environmental Remediation. 2023 Oct 12:187-218..https://doi.org/10.1007/978-3-031-41077-2_9

25. Singh R, Prasad A, Kumar B, Kumari S, Sahu RK, Hedau ST. Potential of dual drug delivery systems: MOF as a hybrid nanocarrier for dual drug delivery in cancer treatment. Chemistry Select. 2022 Sep 27;7(36):202201288.https://doi.org/10.1002/slct.202201288

26. Yeo LY, Friend JR. Electrospinning carbon nanotube polymer composite nanofibers. Journal of Experimental Nanoscience. 2006 Jun 1;1(2):177-209.https://doi.org/10.1080/17458080600670015

27. Inkson BJ. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Materials characterization using non-destructive evaluation (NDE) methods, 2016 Jan 1 (pp. 17-43). Woodhead publishing.https://doi.org/10.1016/B978-0-08-100040-3.00002-X

28. Kumar S, Chandra D, Hazra B, Vishal V, Pathegama Gamage R. Nanopore characteristics of Barakar Formation shales and their impact on the gas storage potential of Korba and Raniganj Basins in India. Energy & Fuels. 2024 Feb 22;38(5):3833-47.https://doi.org/10.1016/j.fuel.2025.135185

29. Feng G, Li W, Zhu Y, Wang Y, Song Y, Zheng S, Shang F. Scale-dependent fractal properties and geological factors for the pore structure in shale: Insights from field emission scanning electron microscopy and fluid intrusion. Energy & Fuels. 2023 Oct 17;37(21):16519-35.https://doi.org/10.1021/acsomega.3c10376

30. Magazzù A, Marcuello C. Investigation of soft matter nano mechanics by atomic force microscopy and optical tweezers: A comprehensive review. Nanomaterials. 2023 Mar 7;13(6):963.https://doi.org/10.3390/nano13060963

31. Li Y, Yang J, Pan Z, Tong W. Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images. Fuel. 2020 Jan 15;260:116352.https://doi.org/10.1016/j.fuel.2019.116352

32. Falsafi SR, Rostam Abadi H, Assad pour E, Jafari SM. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Advances in Colloid and Interface Science. 2020 Jun 1;280:102166.https://doi.org/10.1016/j.cis.2020.102166

33. Dorobantu LS, Gray MR. Application of atomic force microscopy in bacterial research. Scanning. 2010 Mar;32(2):74-96.https://doi.org/10.1002/sca.20177

34. Katea SN, Hajduk S, Orel ZC, Westin G. Low cost, fast solution synthesis of 3D framework ZnOnanosponges. Inorganic Chemistry. 2017 Dec 18;56(24):15150-8.https://doi.org/10.1021/acs.inorgchem.4c04378

35. Bayari SH, Şen EH, Ide S, Topaloglu B. Structural studies on Demospongiae sponges from Gökçeada Island in the Northern Aegean Sea. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018 Mar 5;192:368-77.https://doi.org/10.1016/j.saa.2017.11.046

36. Mazurek AH, Szeleszczuk Ł. A review of applications of solid-state Nuclear Magnetic Resonance (SSNMR) for the analysis of cyclodextrin-including systems. International Journal of Molecular Sciences. 2023 Feb 11;24(4):3648.https://doi.org/10.3390/ijms24043648

37. Anceschi A, Guerretta F, Magnacca G, Zanetti M, Benzi P, Trotta F, Caldera F, Nisticò R. Sustainable N-containing biochars obtained at low temperatures as sorbing materials for environmental application: Municipal biowaste-derived substances and nanosponges case studies. Journal of Analytical and Applied Pyrolysis. 2018 Sep 1;134:606-13.https://doi.org/10.1016/j.jaap.2018.08.010

38. Yousefi N, Wong KK, Hosseinidoust Z, Sørensen HO, Bruns S, Zheng Y, Tufenkji N. Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants. Nanoscale. 2018;10(15):7171-84.https://doi.org/10.1039/d0nr01846e

39. Xu H, Zhou W, Zhang R, Liu S, Zhou Q. Characterizations of pore, mineral and petrographic properties of marine shale using multiple techniques and their implications on gas storage capability for Sichuan Longmaxi gas shale field in China. Fuel. 2019 Apr 1;241:360-71.https://doi.org/10.1016/j.fuel.2018.12.035

40. Morales-Rivas L, González-Orive A, Garcia-Mateo C, Hernández-Creus A, Caballero FG, Vázquez L. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM. Scientific reports. 2015 Nov 25;5(1):17164.

41. Ebenstein DM. Nanoindentation of soft tissues and other biological materials. InHandbook of Nanoindentation 2019 Apr 1 (pp. 279-324). Jenny Stanford Publishing.https://doi.org/10.1016/j.ntm.2024.100057

42. Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomaterials science. 2021;9(13):4541-67.https://doi.org/10.1039/D1BM00504A

43. Azadmanjiri J, Kumar P, Srivastava VK, Sofer Z. Surface functionalization of 2D transition metal oxides and dichalcogenides via covalent and non-covalent bonding for sustainable energy and biomedical applications. ACS Applied Nano Materials. 2020 Mar 17;3(4):3116-43.https://doi.org/10.1021/acselectrochem.4c00147

44. Zhang C, Duan Q, Fan X, Yin M, Hou S, Ye Z, Xiao L. Reversible Ligand–Receptor Interaction-Induced “Tango”-like Dancing of Nanodisks on Living Cell Membrane. Analytical Chemistry. 2025 Jun 17.

45. Nicolle L, Journot CM, Gerber-Lemaire S. Chitosan functionalization: Covalent and non-covalent interactions and their characterization. Polymers. 2021 Nov 26;13(23):4118.https://doi.org/10.3390/polym13234118

46. Gupta D, Varghese BS, Suresh M, Panwar C, Gupta TK. Nanoarchitectonics: Functional nanomaterials and nanostructures—A review. Journal of nanoparticle Research. 2022 Oct;24(10):196.

47. Liu Y, Mo J, Fu Q, Lu Y, Zhang N, Wang S, Nie S. Enhancement of triboelectric charge density by chemical functionalization. Advanced Functional Materials. 2020;30(50):2004714. https://doi.org/10.1002/adfm.202004714

48. Ghurghure SM, Pathan MS, Surwase PR. Nanosponges: A novel approach for targeted drug delivery system. Int. J. Chem. Studies. 2018 Nov;2(2).

49. Iravani S, Varma RS. Nanosponges for drug delivery and cancer therapy: Recent advances. Nanomaterials. 2022 Jul 16;12(14):2440.https://doi.org/10.3390/nano12142440

50. Bergal A, Elmas A, Akyüz G (2019) A New Type and īĞcƚive Approach for anticancer Drug Delivery Application: Nanosponge. Nano Res Appl Vol.5 No.2:3 DOI: 10.36648/2471-9838.5.1.43

51. Utzeri G, Matias PM, Murtinho D, Valente AJ. Cyclodextrin-based nanosponges: Overview and opportunities. Frontiers in chemistry. 2022 Mar 24;10:859406 .

52. Iravani, S.; Varma, R.S. Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances. Nanomaterials 2022, 12, 2440. https:// doi.org/10.3390/nano1214244

53. Yap PL, Auyoong YL, Hassan K, Farivar F, Tran DN, Ma J, Losic D. Multithiol functionalized graphene bio-sponge via photoinitiated thiol-ene click chemistry for efficient heavy metal ions adsorption. Chemical Engineering Journal. 2020;395:124965.

54. Maio A, Pibiri I, Morreale M, Mantia FP, Scaffaro R. An overview of functionalized graphene nanomaterials for advanced applications. Nanomaterials. 2021;11(7):1717.

55. Ma N, Ma C, Li C, Wang T, Tang Y, Wang H, Mou X, Chen Z, He N. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. Journal of nanoscience and nanotechnology. 2013;13(10):6485-98.

56. Cashin VB, Eldridge DS, Yu A, Zhao D. Surface functionalization and manipulation of mesoporous silica adsorbents for improved removal of pollutants: a review. Environmental Science: Water Research & Technology. 2018;4(2):110-28.https://doi.org/10.1039/C7EW00322F

57. Carvalho IC, Medeiros Borsagli FG, Mansur AA, Caldeira CL, Haas DJ, Lage AP, Ciminelli VS, Mansur HS. 3D sponges of chemically functionalized chitosan for potential environmental pollution remediation: biosorbents for anionic dye adsorption and ‘antibiotic-free’antibacterial activity. Environmental technology. 2021 Jun 7;42(13):2046-66.https://doi.org/10.1080/09593330.2019.1689302

58. Skorb EV, Andreeva DV. Surface Nanoarchitecture for Bio‐Applications: Self‐Regulating Intelligent Interfaces. Advanced Functional Materials. 2013 Sep 25;23(36):4483-506.https://doi.org/10.1002/adfm.201203884

59. Maghsoudnia N, Eftekhari RB, Sohi AN, Zamzami A, Dorkoosh FA. Application of nano-based systems for drug delivery and targeting: a review. Journal of Nanoparticle Research. 2020 Aug;22:1-41.https://doi.org/10.1007/s11051-020-04959-8

60. Amani H, Arzaghi H, Bayandori M, Dezfuli AS, Pazoki‐Toroudi H, Shafiee A, Moradi L. Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Advanced materials interfaces. 2019 Jul;6(13):1900572.https://doi.org/10.1002/admi.201900572

61. Ahmad SZ, Salleh WN, Ismail AF, Yusof N, Yusop MZ, Aziz F. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere. 2020 Jun 1;248:126008.https://doi.org/10.1016/j.chemosphere.2020.126008

62. Centi G, Perathoner S. Creating and mastering nano-objects to design advanced catalytic materials. Coordination Chemistry Reviews. 2011 Jul 1;255(13-14):1480-98.https://doi.org/10.1016/j.ccr.2011.01.021

63. Murugan B, Sagadevan S, Fatimah I, Oh WC, Motalib Hossain MA, Johan MR. Smart stimuli-responsive nanocarriers for the cancer therapy–nanomedicine. Nanotechnology Reviews. 2021 Aug 30;10(1):933-53.https://doi.org/10.1515/ntrev-2021-0067

64. Pramanik PK, Solanki A, Debnath A, Nayyar A, El-Sappagh S, Kwak KS. Advancing modern healthcare with nanotechnology, nanobiosensors, and internet of nano things: Taxonomies, applications, architecture, and challenges. Ieee Access. 2020 Apr 3;8:65230-66.

65. Houacine C, Yousaf SS, Khan I, Khurana RK, Singh KK. Potential of natural biomaterials in nano-scale drug delivery. Current Pharmaceutical Design. 2018 Dec 1;24(43):5188-206.https://doi.org/10.2174/1381612825666190118153057

66. Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent advances in stimulus‐responsive nanocarriers for gene therapy. Advanced Science. 2021 Jul;8(14):2100540.https://doi.org/10.1002/advs.202100540

67. Khan A, Alamry KA, Asiri AM. Multifunctional biopolymers‐based composite materials for biomedical applications: a systematic review. ChemistrySelect. 2021 Jan 14;6(2):154-76.https://doi.org/10.1002/slct.202003978

68. Alavarse AC, Frachini EC, da Silva RL, Lima VH, Shavandi A, Petri DF. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. International journal of biological macromolecules. 2022 Mar 31;202:558-96.https://doi.org/10.1016/j.ijbiomac.2022.01.029

69. Arumugam S, Ju Y. Carbon nanotubes reinforced with natural/synthetic polymers to mimic the extracellular matrices of bone–a review. Materials Today Chemistry. 2021 Jun 1;20:100420.https://doi.org/10.1016/j.mtchem.2020.100420.

70. Nandhini J, Karthikeyan E, Rajeshkumar S. Nanomaterials for wound healing: Current status and futuristic frontier. Biomedical Technology. 2024 Jun 1;6:26-45.https://doi.org/10.1016/j.bmt.2023.10.001

71. Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. Journal of Pharmacy and Pharmacology. 2019 Aug;71(8):1185-98.https://doi.org/10.1111/jphp.13098

72. Rabiee N, Iravani S. Nanosponges for hydrogen evolution reaction: current trends and future perspectives. Sustainable Energy & Fuels. 2023;7(19):4825-38.https://doi.org/10.1039/D3SE00696D

73. Jagtap SR, Bhusnure OG, Mujewar IN, Gholve SB, Panchabai VB. Nanosponges: a novel trend for targeted drug delivery. Drug Delivery Ther. 2019 May 2;9:931-8.Taka AL, Pillay K, Mbianda XY. Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: A review. Carbohydrate polymers. 2017 ;159:94-107.

74. Patil-Sen Y. Advances in nano-biomaterials and their applications in biomedicine. Emerging Topics in Life Sciences. 2021 May 14;5(1):169-76.https://doi.org/10.1042/ETLS20200333

75. Fragoso A, Wajs E. Nanosponges in Catalysis and Sensing. Nanosponges: Synthesis and Applications. 2019 Jan 29:263-82.

76. Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R. The application of nanosponges to cancer drug delivery. Expert opinion on drug delivery. 2014 ;11(6):931-41.

77. Li Z, Wang Y, Ding Y, Repp L, Kwon GS, Hu Q. Cell‐based delivery systems: emerging carriers for immunotherapy. Advanced Functional Materials. 2021 Jun;31(23):2100088.https://doi.org/10.1002/adfm.202100088

78. Reza MS, Afroze S, Kuterbekov K, Kabyshev A, Zh. Bekmyrza K, Haque MN, Islam SN, Hossain MA, Hassan M, Roy H, Islam MS. Advanced applications of carbonaceous materials in sustainable water treatment, energy storage, and CO2 capture: a comprehensive review. Sustainability. 2023 May 30;15(11):8815.https://doi.org/10.3390/su15118815

79. Osmani RA, Kulkarni P, Manjunatha S, Gowda V, Hani U, Vaghela R, Bhosale R. Cyclodextrin nano sponges in drug delivery and nanotherapeutics. Environmental Nanotechnology: Volume 1. 2018:279-342.https://doi.org/10.1007/978-3-319-76090-2_9

80. Mullick P, R. Hegde A, Gopalan D, Pandey A, Nandakumar K, Jain S, Kuppusamy G, Mutalik S. Evolving Era of “Sponges”: Nanosponges as a Versatile Nanocarrier for the Effective Skin Delivery of Drugs. Current Pharmaceutical Design. 2022 Jun 1;28(23):1885-96.https://doi.org/10.2174/1381612828666220518090431

81. Jain KK. Role of nanobiotechnology in drug delivery. Drug delivery systems. 2019 Aug 22:55-73.https://doi.org/10.1007/978-1-4939-9798-5_2

82. Peralta ME, Ocampo S, Funes IG, Onaga Medina F, Parolo ME, Carlos L. Nanomaterials with tailored magnetic properties as adsorbents of organic pollutants from wastewaters. Inorganics. 2020 Mar 31;8(4):24.https://doi.org/10.3390/inorganics8040024

83. Fameso FO, Ndambuki JM, Kupolati WK, Snyman J. On the Development of State-of-the-Art Computational Decision Support Systems for Efficient Water Quality Management: Prospects and Opportunities in a Climate Changing World. Air, Soil and Water Research. 2024 Jul;17:11786221241259949. [https://doi.org/10.1016/j.msec.2021.112506 ]

84. David E, Niculescu VC. Volatile organic compounds (VOCs) as environmental pollutants: occurrence and mitigation using nanomaterials. International journal of environmental research and public health. 2021 Dec 13;18(24):13147.https://doi.org/10.3390/ijerph182413147

85. Damiri F, Andra S, Kommineni N, Balu SK, Bulusu R, Boseila AA, Akamo DO, Ahmad Z, Khan FS, Rahman MH, Berrada M. Recent advances in adsorptive nanocomposite membranes for heavy metals ion removal from contaminated water: a comprehensive review. Materials. 2022 Aug 5;15(15):5392.https://doi.org/10.3390/ma15155392

86. Thakur A, Kumar A, Singh A. Adsorptive removal of heavy metals, dyes, and pharmaceuticals: Carbon-based nanomaterials in focus. Carbon. 2024 Jan 25;217:118621.https://doi.org/10.1016/j.carbon.2023.118621

87. Baeza A, Ruiz-Molina D, Vallet-Regí M. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert opinion on drug delivery. 2017 Jun 3;14(6):783-96.https://doi.org/10.1080/17425247.2016.1229298

88. Chen X, Wu Y, Ranjan VD, Zhang Y. Three-dimensional electrical conductive scaffold from biomaterial-based carbon microfiber sponge with bioinspired coating for cell proliferation and differentiation. Carbon. 2018 Aug 1;134:174-82.https://doi.org/10.1016/j.carbon.2018.03.064

89. Liu J, Wang Z, Zhao S, Ding B. Multifunctional nucleic acid nanostructures for gene therapies. Nano Research. 2018 Oct;11:5017-27.https://doi.org/10.1007/s12274-018-2093

90. Zhao Z, Wang D, Li Y. Versatile biomimetic nanomedicine for treating cancer and inflammation disease. Medical Review. 2023 Apr 25;3(2):123-51.https://doi.org/10.1038/s41565-018-0246-4

91. Gowda BJ, Ahmed MG, Almoyad MA, Wahab S, Almalki WH, Kesharwani P. Nanosponges as an emerging platform for cancer treatment and diagnosis. Advanced Functional Materials. 2024 Feb;34(7):2307074.https://doi.org/10.1002/adfm.202307074

92. Gowda BJ, Ahmed MG, Almoyad MA, Wahab S, Almalki WH, Kesharwani P. Nanosponges as an emerging platform for cancer treatment and diagnosis. Advanced Functional Materials. 2024 Feb;34(7):2307074.https://doi.org/10.1002/adfm.202307074

93. Pooja, Gupta T, Dutt M, Saya L. Introduction to Sponge-Like Functional Materials from TEMPO-Oxidized Cellulose Nanofibers. for Environmental Remediation 2023 Oct 12 (pp. 263-290). Cham: Springer Nature Switzerland.https://doi.org/10.1007/978-3-031-41077-2_12

94. Garg S, Kumar P, Greene GW, Mishra V, Avisar D, Sharma RS, Dumée LF. Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems–A review. Journal of Environmental Management. 2022 Apr 15;308:114655.https://doi.org/10.1016/j.jenvman.2022.114655

95. Hamad HN, Idrus S. Recent developments in the application of bio-waste-derived adsorbents for the removal of methylene blue from wastewater: a review. Polymers. 2022 Feb 17;14(4):783.https://doi.org/10.3390/polym14040783

96. Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D, Trotta M, Zara G, Cavalli R. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. European journal of pharmaceutics and biopharmaceutics. 2010 Feb 1;74(2):193-2011.https://doi.org/10.1016/j.ejpb.2009.11.003

97. Zuhra Z, Ali S, Ali S, Xu H, Wu R, Tang Y. Exceptionally amino-quantitated 3D MOF@ CNT-sponge hybrid for efficient and selective recovery of Au (III) and Pd (II). Chemical Engineering Journal. 2022 Mar 1;431:133367. https://doi.org/10.1016/j.cej.2021.133367

98. Serrano-Martinez A, Victoria-Montesinos D, Garcia-Munoz AM, Hernandez-Sanchez P, Lucas-Abellan C, Gonzalez-Louzao R. A systematic review of clinical trials on the efficacy and safety of CRLX101 cyclodextrin-based nanomedicine for cancer treatment. Pharmaceutics. 2023 Jun 26;15(7):1824.

99. Vincy A, Mazumder S, Amrita, Banerjee I, Hwang KC, Vankayala R. Recent progress in red blood cells-derived particles as novel bioinspired drug delivery systems: challenges and strategies for clinical translation. Frontiers in Chemistry. 2022 Apr 27;10:905256.

100. Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine: Nanotechnology, Biology and Medicine. 2016 Jan 1;12(1):81-103.https://doi.org/10.1016/j.nano.2015.08.006

101. Sivasankar C, Hewawaduge C, Lee JH. Novel pro-and eukaryotic expression plasmid expressing omicron antigens delivered via Salmonella elicited MHC class I and II based protective immunity. Journal of Controlled Release. 2023 May 1;357:404-16.https://doi.org/10.1016/j.jconrel.2023.04.015

102. Kumar, A., et al. (2022). Nanosponges: A novel class of drug delivery system—current status and future prospects. Materials Science and Engineering: C, 132, 112506. [https://doi.org/10.1016/j.msec.2021.112506 ]

103. Tannous M, Trotta F, Cavalli R. Nanosponges for combination drug therapy: State-of-the-art and future directions. Nanomedicine. 2020 Mar 1;15(7):643-6.https://doi.org/10.2217/nnm-2020-0007

104. Parisi, O. I., Dattilo, M., Patitucci, F., et al. (2023). Smart nanosponges for drug delivery: Recent developments and future perspectives. Journal of Controlled Release, 357, 25–40. [https://doi.org/10.1016/j.jconrel.2023.04.015]

105. Fameso FO, Ndambuki JM, Kupolati WK, Snyman J. On the Development of State-of-the-Art Computational Decision Support Systems for Efficient Water Quality Management: Prospects and Opportunities in a Climate Changing World. Air, Soil and Water Research. 2024 Jul;17:11786221241259949.. [https://doi.org/10.1016/j.msec.2021.112506]

Published

08-12-2025

How to Cite

DEEPIKA, TYAGI, Y., MORRIS, S., & KORI, A. (2025). RECENT ADVANCES IN NANO SPONGE TECHNOLOGY: FROM SYNTHESIS TO APPLICATIONS. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.55012

Issue

Section

Review Article(s)

Similar Articles

<< < 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.