ADVANCED NANOTHERAPEUTICS IN MULTIPLE SCLEROSIS TREATMENT: FROM BLOOD-BRAIN BARRIER CROSSING TO REMYELINATION ENHANCEMENT

Authors

  • NADEESH T. University of Greenwich, (Medway campus) Central Avenue, Gillingham, Chatham ME4 4TB, United Kingdom
  • SUBHRAJYOTI DHARA Department of Pharmaceutics, Guru Nanak Institute of Pharmaceutical Science and Technology-700114, West Bengal, India https://orcid.org/0009-0001-6452-7747
  • PRIYAM MANNA JSS College of Pharmacy Ooty, Department of Pharmacy Practice (Pharm D), Ooty, Nilgiris, Tamil Nadu, India
  • PRITAM KAYAL Bharat Pharmaceutical Technology, Amtali, Agartala, Tripura (W)-799130, India https://orcid.org/0009-0005-1022-5195

DOI:

https://doi.org/10.22159/ijap.2026v18i1.56603

Keywords:

Nanotechnology, Multiple sclerosis, Drug delivery, Blood-brain barrier, Neuroprotection, Remyelination

Abstract

Multiple sclerosis (MS) is a debilitating autoimmune demyelinating disorder characterised by chronic inflammation, progressive neurodegeneration, and failed remyelination. Current disease-modifying therapies remain limited by poor blood-brain barrier (BBB) penetration, systemic toxicity, and inadequate targeting of pathological processes.

This review comprehensively analyses the role of nanotechnology in overcoming these therapeutic hurdles, examining cutting-edge platforms that address BBB crossing, immunomodulation, and remyelination enhancement in MS treatment.

Three primary nanotechnology platforms demonstrate exceptional therapeutic potential: Gold nanocrystals (CNM-Au8) showing remarkable remyelination activity through energy metabolism enhancement, currently in Phase 2 clinical trials with demonstrated oral bioavailability and BBB penetration; PLGA nanoparticles loaded with myelin antigens inducing robust antigen-specific immune tolerance via tolerogenic immune-modifying mechanisms, preventing disease progression in preclinical models; and Extracellular vesicles providing natural BBB crossing capability with superior immunomodulatory and remyelination-promoting effects through microRNA and growth factor delivery. Additional promising platforms include mannosylated liposomes for targeted antigen delivery, solid lipid nanoparticles for enhanced brain bioavailability, and phosphorus-based dendrimers for precision immunomodulation. These approaches demonstrate significant improvements in motor function, reduced neuroinflammation, enhanced myelin repair, and induction of long-lasting immune tolerance.

Despite remarkable preclinical success and early clinical validation, challenges in manufacturing scalability, regulatory translation, and long-term safety profiles remain. Future efforts must focus on clinical translation through optimised targeting designs, standardisedcharacterisation protocols, and comprehensive toxicity studies to realise the transformative potential of precision nanomedicine in MS therapy.

References

1. Mohammed EMA. Understanding Multiple Sclerosis Pathophysiology and Current Disease-Modifying Therapies: A Review of Unaddressed Aspects. Front Biosci (Landmark Ed) [Internet]. 2024 Nov 19 [cited 2025 Jul 30];29(11):386. Available from: https://www.imrpress.com/journal/FBL/29/11/10.31083/j.fbl2911386.

2. Oh J, Bar-Or A. Emerging therapies to target CNS pathophysiology in multiple sclerosis. Nature Reviews Neurology [Internet]. 2022 [cited 2025 Jul 30];18(8):466–75. Available from: https://www.nature.com/articles/s41582-022-00675-0.

3. Lorenzut S, Negro ID, Pauletto G, Verriello L, Spadea L, Salati C, et al. Exploring the pathophysiology, diagnosis, and treatment options of multiple sclerosis. Journal of Integrative Neuroscience [Internet]. 2025 [cited 2025 Jul 30];24(1):1–14. Available from: https://iris.uniroma1.it/handle/11573/1734520.

4. Yong HY, Yong VW. Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nature Reviews Neurology [Internet]. 2022 [cited 2025 Jul 31];18(1):40–55. Available from: https://www.nature.com/articles/s41582-021-00581-x

5. Haki M, Al-Biati HA, Al-Tameemi ZS, Ali IS, Al-Hussaniy HA. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment. Medicine [Internet]. 2024 [cited 2025 Jul 31];103(8):e37297. Available from: https://journals.lww.com/md-journal/fulltext/2024/02230/review_of_multiple_sclerosis__epidemiology,.15.aspx?context=latestarticles

6. Balasa R, Barcutean L, Mosora O, Manu D. Reviewing the significance of blood–brain barrier disruption in multiple sclerosis pathology and treatment. International journal of molecular sciences [Internet]. 2021 [cited 2025 Jul 31];22(16):8370. Available from: https://www.mdpi.com/1422-0067/22/16/8370

7. Piehl F. Current and emerging disease‐modulatory therapies and treatment targets for multiple sclerosis. J Intern Med [Internet]. 2021 Jun [cited 2025 Jul 31];289(6):771–91. Available from: https://onlinelibrary.wiley.com/doi/10.1111/joim.13215

8. Panghal A, Flora SJS. Nano-based approaches for the treatment of neuro-immunological disorders: a special emphasis on multiple sclerosis. Discover Nano [Internet]. 2024 Oct 28 [cited 2025 Aug 1];19(1):171. Available from: https://link.springer.com/10.1186/s11671-024-04135-0

9. Damavandi AR, Mirmosayyeb O, Ebrahimi N, Zalpoor H, Khalilian P, Yahiazadeh S, et al. Advances in nanotechnology versus stem cell therapy for the theranostics of multiple sclerosis disease. Appl Nanosci [Internet]. 2023 Jun [cited 2025 Aug 1];13(6):4043–73. Available from: https://link.springer.com/10.1007/s13204-022-02698-x

10. Jan Z, Mollazadeh S, Abnous K, Taghdisi SM, Danesh A, Ramezani M, et al. Targeted Delivery Platforms for the Treatment of Multiple Sclerosis. Mol Pharmaceutics [Internet]. 2022 July 4 [cited 2025 Aug 1];19(7):1952–76. Available from: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.1c00892.

11. Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. Journal of controlled release [Internet]. 2017 [cited 2025 Aug 1];264:306–32.https://doi.org/10.1016/j.jconrel.2017.08.033.

12. Mohapatra R, Giri D, Vijayakumar D, Alagendran S, Saavedra GF, Jena JP, Sridharan S, Karthikeyan K. Nanomaterials in Biomedical Applications: A Review. Journal of Advances in Biology & Biotechnology. 2025 Apr 5;28(3):996-1009.

13. Thi TT, Suys EJ, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines. 2021 Apr 8;9(4):359.

14. Wang Y, Li P, Kong L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. Aaps Pharmscitech. 2013 Jun;14(2):585-92.

15. Burlec AF, Corciova A, Boev M, Batir-Marin D, Mircea C, Cioanca O, Danila G, Danila M, Bucur AF, Hancianu M. Current overview of metal nanoparticles’ synthesis, characterization, and biomedical applications, with a focus on silver and gold nanoparticles. Pharmaceuticals. 2023 Oct 4;16(10):1410.

16. Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT. Lipid nanoparticles as carriers for bioactive delivery. Frontiers in chemistry. 2021 Apr 23;9:580118.

17. Belousov AN, Belousova EY, Lekomtseva YV. Efficiency of Nanoparticles (Micromage-B) in the Complex Treatment of Multiple Sclerosis. Clinical Research and Clinical Reports. 2023;2(2).

18. Martinelli C, Pucci C, Battaglini M, Marino A, Ciofani G. Antioxidants and nanotechnology: Promises and limits of potentially disruptive approaches in the treatment of central nervous system diseases. Advanced healthcare materials. 2020 Feb;9(3):1901589.

19. Jiménez A, Estudillo E, Guzmán-Ruiz MA, Herrera-Mundo N, Victoria-Acosta G, Cortés-Malagón EM, López-Ornelas A. Nanotechnology to Overcome Blood–Brain Barrier Permeability and Damage in Neurodegenerative Diseases. Pharmaceutics. 2025 Feb 20;17(3):281.

20. Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal transduction and targeted therapy. 2023 May 25;8(1):217.

21. Gonzalez-Lorenzo M, Ridley B, Minozzi S, Del Giovane C, Peryer G, Piggott T, Foschi M, Filippini G, Tramacere I, Baldin E, Nonino F. Immunomodulators and immunosuppressants for relapsing‐remitting multiple sclerosis: a network meta‐analysis. Cochrane Database of Systematic Reviews. 2024(1).

22. Luo Q, Yang J, Yang M, Wang Y, Liu Y, Liu J, Kalvakolanu DV, Cong X, Zhang J, Zhang L, Guo B. Utilization of nanotechnology to surmount the blood-brain barrier in disorders of the central nervous system. Materials Today Bio. 2025 Jan 4:101457.

23. Liu J, Wang T, Dong J, Lu Y. The blood–brain barriers: novel nanocarriers for central nervous system diseases. Journal of Nanobiotechnology. 2025 Feb 26;23(1):146.

24. Xie J, Shen Z, Anraku Y, Kataoka K, Chen X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials. 2019 Dec 1;224:119491.

25. Han L. Modulation of the blood–brain barrier for drug delivery to brain. Pharmaceutics. 2021 Nov 27;13(12):2024.

26. Bai X, Smith ZL, Wang Y, Butterworth S, Tirella A. Sustained drug release from smart nanoparticles in cancer therapy: a comprehensive review. Micromachines. 2022 Sep 28;13(10):1623.

27. Sharma A, Sharma N, Singh S, Dua K. Review on theranostic and neuroprotective applications of nanotechnology in multiple sclerosis. Journal of Drug Delivery Science and Technology. 2023 Mar 1;81:104220.

28. Ojha S, Kumar B. A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis. Journal of Cellular Immunotherapy. 2018 Dec 1;4(2):56-64.https://doi.org/10.1016/j.jocit.2017.12.001

29. Gharagozloo M, Bannon R, Calabresi PA. Breaking the barriers to remyelination in multiple sclerosis. Current opinion in pharmacology. 2022 Apr 1;63:102194.https://doi.org/10.1016/j.coph.2022.102194

30. Maheshwari, S. et al. (2025). Emergence of Nanomaterials in the Management of Multiple Sclerosis. In: Ansari, M.M., Suresh, A.K., Akhtar, N. (eds) Emergence of Sustainable Biomaterials in Tackling Inflammatory Diseases. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-96-2112-5_12

31. Takei EK. The use of nanoparticles in the diagnosis and treatment of multiple sclerosis: A scoping review. STEM Fellowship Journal. 2024 May 23;10(1):59-73.https://doi.org/10.17975/sfj-2024-005

32. Nuzzo D, Picone P. Multiple sclerosis: focus on extracellular and artificial vesicles, nanoparticles as potential therapeutic approaches. International Journal of Molecular Sciences [Internet]. 2021 [cited 2025 Aug 1];22(16):8866. Available from: https://www.mdpi.com/1422-0067/22/16/8866

33. Bilorosiuk M, Steinman L, Koppisetti S, Hariri R, Leibovitch EC, Jacobson S, Kateb B. Nanomedicine in Demyelinating Disease Application to Diagnosis and Therapy in Multiple Sclerosis. InThe Textbook of Nanoneuroscience and Nanoneurosurgery 2024 Nov 14 (pp. 477-496). Cham: Springer Nature Switzerland.

34. Tarannum, S., Jain, K. (2023). Drug Delivery Strategies in Multiple Sclerosis, Huntington’s Disease and Other Neurodegenerative Diseases. In: Mishra, A., Kulhari, H. (eds) Drug Delivery Strategies in Neurological Disorders: Challenges and Opportunities. Springer, Singapore. https://doi.org/10.1007/978-981-99-6807-7_16.

35. Khalid M, El-Sawy HS. Polymeric nanoparticles: Promising platform for drug delivery. International journal of pharmaceutics. 2017 Aug 7;528(1-2):675-91.

36. Osorio-Querejeta I, Carregal-Romero S, Ayerdi-Izquierdo A, Mäger I, Nash LA, Wood M, Egimendia A, Betanzos M, Alberro A, Iparraguirre L, Moles L. MiR-219a-5p enriched extracellular vesicles induce OPC differentiation and EAE improvement more efficiently than liposomes and polymeric nanoparticles. Pharmaceutics. 2020 Feb 21;12(2):186; https://doi.org/10.3390/pharmaceutics12020186

37. Osorio-Querejeta I, Carregal-Romero S, Ayerdi-Izquierdo A, Mäger I, Nash LA, Wood M, et al. MiR-219a-5p enriched extracellular vesicles induce OPC differentiation and EAE improvement more efficiently than liposomes and polymeric nanoparticles. Pharmaceutics [Internet]. 2020 [cited 2025 Aug 2];12(2):186. Available from: https://www.mdpi.com/1999-4923/12/2/186

38. Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics [Internet]. 2020 [cited 2025 Aug 2];12(3):288. Available from: https://www.mdpi.com/1999-4923/12/3/288?trk=public_post-text

39. Cappellano G, Comi C, Chiocchetti A, Dianzani U. Exploiting PLGA-based biocompatible nanoparticles for next-generation tolerogenic vaccines against autoimmune disease. International Journal of Molecular Sciences [Internet]. 2019 [cited 2025 Aug 2];20(1):204. Available from: https://www.mdpi.com/1422-0067/20/1/204

40. Manna S, Banerjee S, De A, Banerjee S, Das S, Rakshit P, Kumar SA, Sen KK, De S. Therapeutic and diagnostic implications of carbon dot: An advancement in the avenue towards cancer, diabetes and neurodegenerative disorders. Pharmaceutical nanotechnology. 2024.

41. Zierfuss B, Larochelle C, Prat A. Blood–brain barrier dysfunction in multiple sclerosis: causes, consequences, and potential effects of therapies. The Lancet Neurology. 2024 Jan 1;23(1):95-109.

42. Amoriello, R., Memo, C., Ballerini, L. et al. The brain cytokine orchestra in multiple sclerosis: from neuroinflammation to synaptopathology. Mol Brain 17, 4 (2024). https://doi.org/10.1186/s13041-024-01077-7.

43. Zhang S, Yang Y, Lv X, Zhou X, Zhao W, Meng L, Zhu S, Zhang Z, Wang Y. Exosome cargo in neurodegenerative diseases: leveraging their intercellular communication capabilities for biomarker discovery and therapeutic delivery. Brain Sciences. 2024 Oct 23;14(11):1049.

44. Kulkarni M, Patel K, Patel A, Patel S, Desai J, Patel M, Shah U, Patel A, Solanki N. Nanomaterials as drug delivery agents for overcoming the blood-brain barrier: A comprehensive review. ADMET and DMPK. 2024 Feb 13;12(1):63-105.https://doi.org/10.5599/admet.2043

45. Zhang S, Yang Y, Lv X, Zhou X, Zhao W, Meng L, Zhu S, Zhang Z, Wang Y. Exosome cargo in neurodegenerative diseases: leveraging their intercellular communication capabilities for biomarker discovery and therapeutic delivery. Brain Sciences. 2024 Oct 23;14(11):1049.

46. Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS chemical neuroscience. 2011 Mar 16;2(3):118-40.https://doi.org/10.1021/cn100100e.

47. Rocca MA, Preziosa P, Barkhof F, Brownlee W, Calabrese M, De Stefano N, Granziera C, Ropele S, Toosy AT, Vidal-Jordana À, Di Filippo M. Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis. The Lancet Regional Health–Europe. 2024 Sep 1;44. https://doi.org/10.1016/j.lanepe.2024.100978.

48. Zhang, R., Kiessling, F., Lammers, T. et al. Clinical translation of gold nanoparticles. Drug Deliv. and Transl. Res. 13, 378–385 (2023). https://doi.org/10.1007/s13346-022-01232-4.

49. Phan NM, Nguyen TL, Shin H, Trinh TA, Kim J. ROS-scavenging lignin-based tolerogenic nanoparticle vaccine for treatment of multiple sclerosis. ACS nano. 2023 Dec 5;17(24):24696-709.

50. Collorone S, Coll L, Lorenzi M, Lladó X, Sastre-Garriga J, Tintoré M, Montalban X, Rovira À, Pareto D, Tur C. Artificial intelligence applied to MRI data to tackle key challenges in multiple sclerosis. Multiple Sclerosis Journal. 2024 Jun;30(7):767-84.

51. Ghosh S, Bhatti GK, Sharma PK, Kandimalla R, Mastana SS, Bhatti JS. Potential of nano-engineered stem cells in the treatment of multiple sclerosis: a comprehensive review. Cellular and Molecular Neurobiology. 2024 Dec;44(1):6.

52. Al-Sayadi GM, Verma A, Choudhary Y, Sandal P, Patel P, Singh D, Das Gupta G, Das Kurmi B. Solid Lipid Nanoparticles (SLNs): Advancements in modification strategies toward drug delivery vehicle. Pharmaceutical nanotechnology. 2023 Apr 1;11(2):138-54.

53. Greco G, Sarpietro MG. Liposome-Assisted Drug Delivery in the Treatment of Multiple Sclerosis. Molecules. 2024 Oct 3;29(19):4689.

54. Juhairiyah F, De Lange EC. Understanding drug delivery to the brain using liposome-based strategies: studies that provide mechanistic insights are essential. The AAPS Journal. 2021 Oct 28;23(6):114.

55. Zhao Y, Zhang J, Cheng X, Huang W, Shen S, Wu S, Huang Y, Nie G, Wang H, Qiu W. Targeting L-Selectin Lymphocytes to Deliver Immunosuppressive Drug in Lymph Nodes for Durable Multiple Sclerosis Treatment. Adv Sci (Weinh). 2023 Jul;10(20):e2300738. doi: 10.1002/advs.202300738. Epub 2023 May 12. PMID: 37170724; PMCID: PMC10369270.

56. Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, Taliyan R, Yang CH. Solid lipid nanoparticles (SLNs): an advanced drug delivery system targeting brain through BBB. Pharmaceutics. 2021 Jul 31;13(8):1183.

57. Bove RM, Green AJ. Remyelinating pharmacotherapies in multiple sclerosis. Neurotherapeutics. 2017 Oct 1;14(4):894-904.

58. Li PY, Bearoff F, Zhu P, Fan Z, Zhu Y, Fan M, Cort L, Kambayashi T, Blankenhorn EP, Cheng H. PEGylation enables subcutaneously administered nanoparticles to induce antigen-specific immune tolerance. Journal of controlled release. 2021 Mar 10;331:164-75.

59. Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Patel RJ, et al. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. Journal of Controlled Release [Internet]. 2020 [cited 2025 Aug 14];321:372–415. Available from: https://www.sciencedirect.com/science/article/pii/S0168365920301097?casa_token=bvRf-2TAWv8AAAAA:ufDS8Shf1Cd2OVCsXfVryerMQLmdglViV2_c1xzp1A3loaiCBaj2vIVcfxNN3G5O-qaMYfyfLQ.

60. Jiao Y, Yang L, Wang R, Song G, Fu J, Wang J, Gao N, Wang H. Drug Delivery Across the Blood–Brain Barrier: A New Strategy for the Treatment of Neurological Diseases. Pharmaceutics. 2024 Dec 19;16(12):1611.

61. Niu X, Chen J, Gao J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian journal of pharmaceutical sciences. 2019 Sep 1;14(5):480-96.

62. Bonferoni MC, Rossi S, Sandri G, Ferrari F, Gavini E, Rassu G, Giunchedi P. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics. 2019 Feb 17;11(2):84.

63. Kaye AD, Sala KR, Dethloff D, Norton M, Moss C, Plessala MJ, Derouen AG, Torres YL, Kim J, Tirumala S, Shekoohi S. The evolving use of gold nanoparticles as a possible reversal agent for the symptoms of neurodegenerative diseases: a narrative review. Cureus. 2024 Jul 18;16(7).

64. Li Z, Bai R, Yi J, Zhou H, Xian J, Chen C. Designing Smart Iron Oxide Nanoparticles for MR Imaging of Tumors. Chemical & Biomedical Imaging [Internet]. 2023 July 24 [cited 2025 Aug 14];1(4):315–39. Available from: https://pubs.acs.org/doi/10.1021/cbmi.3c00026

65. Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics [Internet]. 2020 [cited 2025 Aug 14];10(20):8996. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7415816/

66. Dehkordi AA, Mollazadeh S, Talaie A, Yazdimamaghani M. Engineering PAMAM Dendrimers for Optimized Drug Delivery. Nano Trends. 2025 Feb 16:100094.

67. Hayder M, Garzoni M, Bochicchio D, Caminade AM, Couderc F, Ong-Meang V, Davignon JL, Turrin CO, Pavan GM, Poupot R. Three-dimensional directionality is a pivotal structural feature for the bioactivity of azabisphosphonate-capped poly (phosphorhydrazone) nanodrug dendrimers. Biomacromolecules. 2018 Feb 14;19(3):712-20.

68. Gárate-Vélez L, Quintana M. Carbon-based nanomaterials: interactions with cells, brain therapies, and neural sensing. Journal of Materials Science: Materials in Engineering. 2025 Dec;20(1):1-23.

69. Haqqani AS, Bélanger K, Stanimirovic DB. Receptor-mediated transcytosis for brain delivery of therapeutics: receptor classes and criteria. Frontiers in Drug Delivery. 2024 Mar 12;4:1360302.

70. Zhang W, Liu QY, Haqqani AS, Leclerc S, Liu Z, Fauteux F, Baumann E, Delaney CE, Ly D, Star AT, Brunette E. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids and Barriers of the CNS. 2020 Jul 22;17(1):47.

71. Banks WA, Rhea EM, Reed MJ, Erickson MA. The penetration of therapeutics across the blood-brain barrier: Classic case studies and clinical implications. Cell Reports Medicine. 2024 Nov 19;5(11).

72. Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Frontiers in neuroscience. 2019 Jan 11;12:1019.

73. Schreiner TG, Romanescu C, Popescu BO. The blood–brain barrier—A key player in multiple sclerosis disease mechanisms. Biomolecules. 2022 Apr 2;12(4):538.

74. Yang G, Van Kaer L. Therapeutic targeting of immune cell autophagy in multiple sclerosis: russian roulette or silver bullet?. Frontiers in Immunology. 2021 Aug 31;12:724108.

75. Mado H, Adamczyk-Sowa M, Sowa P. Role of microglial cells in the pathophysiology of MS: synergistic or antagonistic?. International Journal of Molecular Sciences. 2023 Jan 17;24(3):1861.

76. Vermersch P, Airas L, Berger T, Deisenhammer F, Grigoriadis N, Hartung HP, et al. The role of microglia in multiple sclerosis: implications for treatment with Bruton’s tyrosine kinase inhibitors. Frontiers in Immunology [Internet]. 2025 [cited 2025 Aug 15];16:1495529. Available from: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2025.1495529/abstract

77. Tepavčević V, Lubetzki C. Oligodendrocyte progenitor cell recruitment and remyelination in multiple sclerosis: the more, the merrier? Brain [Internet]. 2022 [cited 2025 Aug 15];145(12):4178–92. Available from: https://academic.oup.com/brain/article-abstract/145/12/4178/6696052

78. Derdelinckx J, Cras P, Berneman ZN, Cools N. Antigen-specific treatment modalities in MS: The past, the present, and the future. Frontiers in Immunology [Internet]. 2021 [cited 2025 Aug 16];12:624685. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2021.624685/full

79. Nally FK, De Santi C, McCoy CE. Nanomodulation of macrophages in multiple sclerosis. Cells. 2019 Jun 5;8(6):543.

80. Rittchen S, Boyd A, Burns A, Park J, Fahmy TM, Metcalfe S, Williams A. Myelin repair in vivo is increased by targeting oligodendrocyte precursor cells with nanoparticles encapsulating leukaemia inhibitory factor (LIF). Biomaterials. 2015 Jul 1;56:78-85.

81. Zveik O, Rechtman A, Ganz T, Vaknin-Dembinsky A. The interplay of inflammation and remyelination: rethinking MS treatment with a focus on oligodendrocyte progenitor cells. Molecular Neurodegeneration. 2024 Jul 12;19(1):53.

82. Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Frontiers in neuroscience [Internet]. 2019 [cited 2025 Aug 14];12:1019. Available from: https://www.frontiersin.org/articles/10.3389/fnins.2018.01019/full

83. Horwitz DA, Bickerton S, Koss M, Fahmy TM, La Cava A. Suppression of Murine Lupus by CD 4+ and CD 8+ Treg Cells Induced by T Cell–Targeted Nanoparticles Loaded With Interleukin‐2 and Transforming Growth Factor β. Arthritis & Rheumatology [Internet]. 2019 Apr [cited 2025 Aug 15];71(4):632–40. Available from: https://acrjournals.onlinelibrary.wiley.com/doi/10.1002/art.40773

84. Horwitz DA, Bickerton S, La Cava A. Strategies to use nanoparticles to generate CD4 and CD8 regulatory T cells for the treatment of SLE and other autoimmune diseases. Frontiers in Immunology [Internet]. 2021 [cited 2025 Aug 15];12:681062. Available from: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.681062/full

85. Horwitz DA, Bickerton S, Koss M, Fahmy TM, La Cava A. Suppression of Murine Lupus by CD 4+ and CD 8+ Treg Cells Induced by T Cell–Targeted Nanoparticles Loaded With Interleukin‐2 and Transforming Growth Factor β. Arthritis & Rheumatology [Internet]. 2019 Apr [cited 2025 Aug 15];71(4):632–40. Available from: https://acrjournals.onlinelibrary.wiley.com/doi/10.1002/art.40773

86. Chountoulesi M, Demetzos C. Promising nanotechnology approaches in treatment of autoimmune diseases of central nervous system. Brain Sciences. 2020 Jun 2;10(6):338.

87. Robinson AP, Zhang JZ, Titus HE, Karl M, Merzliakov M, Dorfman AR, Karlik S, Stewart MG, Watt RK, Facer BD, Facer JD. Nanocatalytic activity of clean-surfaced, faceted nanocrystalline gold enhances remyelination in animal models of multiple sclerosis. Sci Rep. 2020; 10 (1): 1936. Cell Metabolism. 2015 Jul;22(1):31-53.

88. Vucic S, Menon P, Huynh W, Mahoney C, Ho KS, Hartford A, Rynders A, Evan J, Evan J, Ligozio S, Glanzman R. Efficacy and safety of CNM-Au8 in amyotrophic lateral sclerosis (RESCUE-ALS study): a phase 2, randomised, double-blind, placebo-controlled trial and open label extension. EClinicalMedicine. 2023 Jun 1;60.

89. Dong S. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. IJN [Internet]. 2008 Oct [cited 2025 Aug 14];311. Available from: http://www.dovepress.com/targeted-magnetic-iron-oxide-nanoparticles-for-tumor-imaging-and-thera-peer-reviewed-article-IJN.

90. LaMothe RA, Kolte PN, Vo T, Ferrari JD, Gelsinger TC, Wong J, Chan VT, Ahmed S, Srinivasan A, Deitemeyer P, Maldonado RA. Tolerogenic nanoparticles induce antigen-specific regulatory T cells and provide therapeutic efficacy and transferrable tolerance against experimental autoimmune encephalomyelitis. Frontiers in immunology. 2018 Mar 2;9:281.

91. Park DJ, Yun WS, Kim WC, Park JE, Lee SH, Ha S, Choi JS, Key J, Seo YJ. Improvement of stem cell-derived exosome release efficiency by surface-modified nanoparticles. Journal of nanobiotechnology. 2020 Dec 7;18(1):178.

92. Kenison JE, Stevens NA, Quintana FJ. Therapeutic induction of antigen-specific immune tolerance. Nature Reviews Immunology. 2024 May;24(5):338-57.

93. Gholamzad M, Baharlooi H, Ardestani MS, Seyedkhan Z, Azimi M. Prophylactic and therapeutic effects of MOG-conjugated PLGA nanoparticles in C57Bl/6 mouse model of multiple sclerosis. Advanced pharmaceutical bulletin. 2020 Jul 26;11(3):505.

94. Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal transduction and targeted therapy. 2024 Jan 12;9(1):17.

95. Belousov AN, Belousova EY, Mysyk AV. A Clinical Case of the Successful Application of Magnetite Nanoparticles in the Complex Treatment of Multiple Sclerosis.

Published

12-11-2025

How to Cite

T., N., DHARA, S., MANNA, P., & KAYAL, P. (2025). ADVANCED NANOTHERAPEUTICS IN MULTIPLE SCLEROSIS TREATMENT: FROM BLOOD-BRAIN BARRIER CROSSING TO REMYELINATION ENHANCEMENT. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.56603

Issue

Section

Review Article(s)

Similar Articles

<< < 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.