DENDRIMERS IN OCULAR DRUG DELIVERY: A COMPREHENSIVE REVIEW

Authors

  • SHALU VERMA Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun-248007, India https://orcid.org/0000-0003-3845-3710
  • VIVEK SILORI Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun-248007, India
  • PRASHANT KUMAR Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun-248007, India
  • MUNEESH KANAUJAYA Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun-248007, India

DOI:

https://doi.org/10.22159/ijap.2026v18i1.56820

Keywords:

Ocular drug delivery, Dendrimers, Nanocarriers, PAMAM dendrimers, Ocular barriers

Abstract

The anatomical and physiological complexity of the eye significantly hinders drug delivery to both the anterior and posterior segments, complicating the treatment of various ocular diseases. Although conventional ophthalmic formulations, primarily topical eye drops, are widely used, their bioavailability remains low. Recent advancements in nanotechnology have introduced dendrimers as promising nanoscale drug carriers for ocular therapy. Dendrimers can enhance drug solubility, permeability, stability, and retention owing to their unique branched architecture, multivalent surface functionality, and capacity for precise drug targeting. This review discusses the anatomical barriers to ocular drug delivery, innovative strategies to overcome them, and highlights various dendrimer generations, types, synthesis methods, and their applications in treating eye disorders such as glaucoma, age-related macular degeneration, diabetic retinopathy, and uveitis. Furthermore, it explores clinical studies, patents and their ocular applications/rationale, and regulatory hurdles associated with the clinical translation of dendrimer-based therapeutics. Despite, promising preclinical data, manufacturing and regulatory challenges remain major hurdles for their widespread clinical use. Dendrimers hold great promise as advanced ocular drug delivery systems, with the potential to improve treatment efficacy for a wide range of vision-impairing disorders.

References

[1] Singh M, Bharadwaj S, Lee KE, Kang SG. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J Control Release. 2020. doi:10.1016/j.jconrel.2020.10.025.

[2] Ahmed S, Amin MM, Sayed S. Ocular drug delivery: a comprehensive review. AAPS PharmSciTech. 2023;24:66. doi:10.1208/s12249-023-02516-9.

[3] Bairagi RD, Reon RR, Hasan MM, Sarker S, Debnath D, Rahman MT, et al. Ocular drug delivery systems based on nanotechnology: a comprehensive review for the treatment of eye diseases. Discov Nano. 2025;20:75. doi:10.1186/s11671-025-04234-6.

[4] Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for polymers used in ocular drug delivery. Front Med. 2022;8:787644. doi:10.3389/fmed.2021.787644.

[5] Qin C, Wen S, Zhu S, Liu D, Chen S, Qie J, et al. Are poly(amidoamine) dendrimers safe for ocular applications? Toxicological evaluation in ocular cells and tissues. J Ocul Pharmacol Ther. 2020;36(10):715-24. doi:10.1089/jop.2020.0078.

[6] Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, et al. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv. 2020;10(46):27835-55. doi:10.1039/D0RA04971A.

[7] Yetisgin AA, Sivakumar PM, Cetinel S. Current state and potential of polymersomes as ocular drug delivery systems. Nanoscale. 2025;17:14458-76. doi:10.1039/D5NR01273B.

[8] Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology. 2023;21:232. doi:10.1186/s12951-023-01992-2.

[9] Wang J, Li B, Huang D, Norat P, Grannonico M, Cooper RC, et al. Nano-in-nano dendrimer gel particles for efficient topical delivery of antiglaucoma drugs into the eye. Chem Eng J. 2021;425:130498. doi:10.1016/j.cej.2021.130498.

[10] Akhter MH, Ahmad I, Alshahrani MY, Al-Harbi AI, Khalilullah H, Afzal O, et al. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels. 2022;8(2):82. doi:10.3390/gels8020082.

[11] Dhull A, Yu C, Wilmoth AH, Chen M, Sharma A, Yiu S. Dendrimers in corneal drug delivery: recent developments and translational opportunities. Pharmaceutics. 2023;15(6):1591. doi:10.3390/pharmaceutics15061591.

[12] Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng. 2022;16(1):18. doi:10.1186/s13036-022-00298-5.

[13] Suri R, Beg S, Kohli K. Target strategies for drug delivery bypassing ocular barriers. J Drug Deliv Sci Technol. 2020;55:101389. doi:10.1016/j.jddst.2019.101389.

[14] Bisht R, Mandal A, Jaiswal JK, Rupenthal ID. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases. Wiley Interdiscip Rev NanomedNanobiotechnol. 2018;10(2):e1473. doi:10.1002/wnan.1473.

[15] Khare A, Grover K, Pawar P, Singh I. Mucoadhesive polymers for enhancing retention in ocular drug delivery: a critical review. Rev AdhesAdhes. 2014;2(4):467-502. doi:10.7569/RAA.2014.097310.

[16] Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug MetabToxicol. 2020;16(10):885-906. doi:10.1080/17425255.2020.1803278.

[17] Al-Qaysi ZK, Beadham IG, Schwikkard SL, Bear JC, Al-Kinani AA, Alany RG. Sustained release ocular drug delivery systems for glaucoma therapy. Expert Opin Drug Deliv. 2023;20(7):905-19. doi:10.1080/17425247.2023.2219053.

[18] Rodríguez Villanueva J, Rodríguez Villanueva L. Overcoming barriers: controlled-release systems as vectors, the posterior segment of the eye approach as a model. Ophthalmol Res Int J. 2018;8(1):1-10. doi:10.9734/OR/2018/38862.

[19] Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev. 2018;126:96-112. doi:10.1016/j.addr.2017.09.008.

[20] Alonso MJ. Nanomedicines for overcoming biological barriers. Biomed Pharmacother. 2004;58(3):168-72. doi:10.1016/j.biopha.2004.01.007.

[21] Sánchez-López E, Espina M, Doktorovova S, Souto EB, García ML. Lipid nanoparticles (SLN, NLC): overcoming the anatomical and physiological barriers of the eye – part I - barriers and determining factors in ocular delivery. Eur J Pharm Biopharm. 2017;110:70-5. doi:10.1016/j.ejpb.2016.10.009.

[22] Xia Y, Zhang Y, Du Y, Wang Z, Cheng L, Du Z. Comprehensive dry eye therapy: overcoming ocular surface barrier and combating inflammation, oxidation, and mitochondrial damage. J Nanobiotechnology. 2024;22:233. doi:10.1186/s12951-024-02503-7.

[23] Wu H, Xu Y, Cai M, You L, Liu J, Dong X, et al. Design of an L-valine-modified nanomicelle-based drug delivery system for overcoming ocular surface barriers. Pharmaceutics. 2022;14(6):1277. doi:10.3390/pharmaceutics14061277.

[24] Duncan TJ, Baba K, Oie Y, Nishida K. A novel method using quantum dots for testing the barrier function of cultured epithelial cell sheets. Invest Ophthalmol Vis Sci. 2015;56(9):5781-92.

[25] Sharma OP, Patel V, Mehta T. Nanocrystal for ocular drug delivery: hope or hype. Drug Deliv Transl Res. 2016;6(4):399-413. doi:10.1007/s13346-016-0292-0.

[26] Rathore AS, Verma S, Aggarwal K, Singh A. Proniosomes: a novel vesicular carrier for ocular drug targeting. Asian J Pharm Clin Res. 2025;18(7):1-10. doi:10.22159/ajpcr.2025v18i7.54552.

[27] Singh RR, Tekko I, McAvoy K, McMillian H, Jones D, Donnelly RF. Minimally invasive microneedles for ocular drug delivery. Expert Opin Drug Deliv. 2017;14(4):525-37. doi:10.1080/17425247.2016.1218460.

[28] Radhakrishnan K, Sonali N, Moreno M, Nirmal J, Fernandez AA, Venkatraman S, et al. Protein delivery to the back of the eye: barriers, carriers and stability of anti-VEGF proteins. Drug Discov Today. 2017;22(2):416-23. doi:10.1016/j.drudis.2016.10.015.

[29] Rusciano D. A personal scientific journey in ophthalmology: twenty-five years of translating research into novel therapies. Pharmaceuticals. 2025;18(6):883. doi:10.3390/ph18060883.

[30] Kundu S, Kumari G, Srinivasarao DA. Emerging drug delivery strategies for glaucoma therapy: focus on nanoparticles and stimuli-responsive systems. RSC Pharm. 2025;2:1050-77. doi:10.1039/d5pm00068h.

[31] Lee DA, Higginbotham EJ. Glaucoma and its treatment: a review. Am J Health Syst Pharm. 2005;62(7):691-9.

[32] Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901-11. doi:10.1001/jama.2014.3192.

[33] Lam D, Rao SK, Ratra V, Liu Y, Mitchell P, King J, et al. Cataract. Nat Rev Dis Primers. 2015;1:15014. doi:10.1038/nrdp.2015.14.

[34] Jonas JB, Cheung CMG, Panda-Jonas S. Updates on the epidemiology of age-related macular degeneration. Asia Pac J Ophthalmol (Phila). 2017;6(6):493-7. doi:10.22608/APO.2017251.

[35] Fine SL, Berger JW, Maguire MG, Ho AC. Age-related macular degeneration. N Engl J Med. 2000;342:483-92. doi:10.1056/NEJM200002173420707.

[36] Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156-86. doi:10.1016/j.preteyeres.2015.08.001.

[37] Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017;2(14):e93751. doi:10.1172/jci.insight.93751.

[38] Marshall LL, Roach JM. Treatment of dry eye disease. Consult Pharm. 2016;31(2):96-106.

[39] Pflugfelder SC, de Paiva CS. The pathophysiology of dry eye disease: what we know and future directions for research. Ophthalmology. 2017;124(11S):S4-S13. doi:10.1016/j.ophtha.2017.07.010.

[40] Azari AA, Barney NP. Conjunctivitis: a systematic review of diagnosis and treatment. JAMA. 2013;310(16):1721-9. doi:10.1001/jama.2013.280318.

[41] Singh N, Mazumder R, Monika, Sakshi, Khan F, Kumar B. Development in therapeutic strategies for allergic conjunctivitis. Trends Immunother. 2023;7(1):2025. doi:10.24294/ti.v7.i1.2025.

[42] Neri P, Perez Y, Pichi F. Precision medicine in uveitis: redefining treatment optimization through biomarkers and tailored therapies. Int Ophthalmol. 2025;45:41. doi:10.1007/s10792-025-03413-9.

[43] Muñoz-Fernández S, Martín-Mola E. Uveitis. Best Pract Res Clin Rheumatol. 2006;20(3):487-505. doi:10.1016/j.berh.2006.03.008.

[44] Ancona-Lezama D, Dalvin LA, Shields CL. Modern treatment of retinoblastoma: a 2020 review. Indian J Ophthalmol. 2020;68(11):2356-65. doi:10.4103/ijo.IJO_721_20.

[45] Dimaras H, Kimani K, Dimba EAO, Gronsdahl P, White A, Chan HSL, et al. Retinoblastoma. Lancet. 2012;379(9824):1436-46. doi:10.1016/S0140-6736(11)61137-9.

[46] Bennett JL. Optic neuritis. Continuum (Minneap Minn). 2019;25(5):1236-64.

[47] Tsai TH, Lin CW, Chan LW, Tew TB, Chen TC. Neuroprotective effects of novel treatments on acute optic neuritis—a meta-analysis. Biomedicines. 2022;10(1):192. doi:10.3390/biomedicines10010192.

[48] Lee GA, Hirst LW. Ocular surface squamous neoplasia. SurvOphthalmol. 1995;39(6):429-50.

[49] Höllhumer R, Williams S, Michelow P. Ocular surface squamous neoplasia: management and outcomes. Eye (Lond). 2021;35(6):1562-73. doi:10.1038/s41433-021-01422-3.

[50] Munavalli BB, Naik SR, Torvi AI, Kariduraganavar MY. Dendrimers. In: Mazumder MAJ, Sheardown H, Al-Ahmed A, editors. Functional Polymers. Cham: Springer Nature Switzerland AG; 2019. p. 289-349. doi:10.1007/978-3-319-95987-0_9.

[51] Caminade AM. Dendrimers, an emerging opportunity in personalized medicine? J Pers Med. 2022;12(8):1334. doi:10.3390/jpm12081334.

[52] Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev. 2012;64:102-15. doi:10.1016/j.addr.2012.09.030.

[53] Baig T, Nayak J, Dwivedi V, Singh A, Srivastava A, Tripathi PK. A review about dendrimers: synthesis, types, characterization and applications. Int J Adv Pharm Biol Chem. 2015;4(1):44-59.

[54] Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H. A review on synthesis and applications of dendrimers. J Iran Chem Soc. 2021;18:503-17. doi:10.1007/s13738-020-02053-3.

[55] Tung NPH, Lim WM, Liew YK, Lim CJ, Then YY, Cheong KW, et al. Recent advances in nanomedicine for ocular drug delivery. Biomater Transl. 2025. doi:10.12336/bmt.25.00022.

[56] Kesharwani P, Tekade RK, Jain NK. Dendrimer generational nomenclature: the need to harmonize. Drug Discov Today. 2015;20(2):139-41. doi:10.1016/j.drudis.2014.12.015.

[57] Maiti PK, Çağın T, Wang G, Goddard WA 3rd. Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules. 2004;37(16):6236-54. doi:10.1021/ma035629b.

[58] Bharadwaj P, Roullin VG, Leblond Chain J. Crossing the blood–brain barrier: advances in dendrimer-based nanocarriers for central nervous system delivery. Nanoscale. 2025. doi:10.1039/d5nr02548f.

[59] Jain V, Maingi V, Maiti PK, Bharatam PV. Molecular dynamics simulations of PPI dendrimer–drug complexes. Soft Matter. 2013;9(28):6482-96. doi:10.1039/c3sm50434d.

[60] Kaur D, Jain K, Mehra NK, Kesharwani P, Jain NK. A review on comparative study of PPI and PAMAM dendrimers. J Nanopart Res. 2016;18(5):146. doi:10.1007/s11051-016-3423-0.

[61] Wang D, Imae T, Miki M. Fluorescence emission from PAMAM and PPI dendrimers. J Colloid Interface Sci. 2007;312(1):8-13. doi:10.1016/S0021-9797(07)00550-4.

[62] Jain S, Kaur A, Puri R, Utreja P, Jain A, Bhide M, et al. Poly propyl ether imine (PETIM) dendrimer: a novel non-toxic dendrimer for sustained drug delivery. Eur J Med Chem. 2010;45(11):4997-5005. doi:10.1016/j.ejmech.2010.08.006.

[63] Sadler K, Tam JP. Peptide dendrimers: applications and synthesis. Rev Mol Biotechnol. 2002;90(3-4):195-229. doi:10.1016/S1389-0352(01)00061-7.

[64] Kesharwani P, Gothwal A, Iyer AK, Jain K, Chourasia MK, Gupta U. Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discov Today. 2018;23(2):300-14. doi:10.1016/j.drudis.2017.06.009.

[65] Romagnoli B, Hayes W. Chiral dendrimers—from architecturally interesting hyperbranched macromolecules to functional materials. J Mater Chem. 2002;12(3):767-99. doi:10.1039/b110218b.

[66] Ramireddy RR, Raghupathi KR, Torres DA, Thayumanavan S. Stimuli sensitive amphiphilic dendrimers. New J Chem. 2012;36(2):340-9. doi:10.1039/c2nj20879b.

[67] Zhu Y, Liu C, Pang Z. Dendrimer-based drug delivery systems for brain targeting. Biomolecules. 2019;9(12):790. doi:10.3390/biom9120790.

[68] Durairaj C, Kadam RS, Chandler JW, Hutcherson SL, Kompella UB. Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability, and delivery of gatifloxacin. Invest Ophthalmol Vis Sci. 2010;51(11):5804-16. doi:10.1167/iovs.10-5388.

[69] Bravo-Osuna I, Vicario-de-la-Torre M, Andrés-Guerrero V, Sánchez-Nieves J, Guzmán-Navarro M, de la Mata FJ, et al. Novel water-soluble mucoadhesive carbosilane dendrimers for ocular administration. Mol Pharm. 2016;13(9):2966-76. doi:10.1021/acs.molpharmaceut.6b00182.

[70] Holden CA, Tyagi P, Thakur A, Kadam R, Jadhav G, Kompella UB, et al. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine. 2012;8(6):776-83. doi:10.1016/j.nano.2011.08.018.

[71] Yao W, Sun K, Mu H, Liang N, Liu Y, Yao C, et al. Preparation and characterization of puerarin-dendrimer complexes as an ocular drug delivery system. Drug Dev Ind Pharm. 2010;36(9):1027-35. doi:10.3109/03639041003610799.

[72] Kambhampati SP, Mishra MK, Mastorakos P, Oh Y, Lutty GA, Kannan RM. Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells. Eur J Pharm Biopharm. 2015;95(Pt B):239-49. doi:10.1016/j.ejpb.2015.02.013.

[73] Yavuz B, Bozdağ Pehlivan S, Vural İ, Ünlü N. In vitro/in vivo evaluation of dexamethasone—PAMAM dendrimer complexes for retinal drug delivery. J Pharm Sci. 2015;104(11):3814-23. doi:10.1002/jps.24588.

[74] Kalomiraki M, Thermos K, Chaniotakis NA. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomedicine. 2016;11:1-12. doi:10.2147/IJN.S93069.

[75] Wrońska N, Majoral JP, Appelhans D, Bryszewska M, Lisowska K. Synergistic effects of anionic/cationic dendrimers and levofloxacin on antibacterial activities. Molecules. 2019;24(16):2894. doi:10.3390/molecules24162894.

[76] Prajapati RN, Prajapati SK, Singh N, Gupta R. Polyamidoamine dendrimer-mediated formulation development and in vitro-in vivo evaluation of ketorolac. Asian J Pharm. 2018;12(2):S713-21.

[77] Ho MN, Bach LG, Nguyen TH, Ho MH, Nguyen DH, Nguyen CK, et al. PEGylated poly(amidoamine) dendrimers-based drug loading vehicles for delivering carboplatin in treatment of various cancerous cells. J Nanopart Res. 2019;21(2):43. doi:10.1007/s11051-019-4486-5.

[78] Carta F, Osman SM, Vullo D, Gullotto A, Winum JY, Alothman ZA, et al. Poly(amidoamine) dendrimers with carbonic anhydrase inhibitory activity and antiglaucoma action. J Med Chem. 2015;58(9):4039-45. doi:10.1021/acs.jmedchem.5b00383.

[79] Yogaraj V, Gowtham G, Aksheda C, Manikandan R, Murugan E, Arumugam M. Quaternary ammonium poly(amidoamine) dendrimeric encapsulated nanocurcumin efficiently prevents cataract of rat pups through regulation of pro-inflammatory gene expression. J Drug Deliv Sci Technol. 2020;58:101785. doi:10.1016/j.jddst.2020.101785.

[80] Yandrapu SK, Kanujia P, Chalasani KB, Mangamoori L, Kolapalli RV, Chauhan A. Development and optimization of thiolated dendrimer as a viable mucoadhesive excipient for the controlled drug delivery: an acyclovir model formulation. Nanomedicine. 2013;9(4):514-22. doi:10.1016/j.nano.2012.10.005.

[81] Kambhampati SP, Kannan RM. Dendrimer nanoparticles for ocular drug delivery. J Ocul Pharmacol Ther. 2013;29(2):151-65. doi:10.1089/jop.2012.0232.

[82] Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release. 2005;102(1):23-38. doi:10.1016/j.jconrel.2004.09.015.

[83] Alshammari RA, Aleanizy FS, Aldarwesh A, Alqahtani FY, Mahdi WA, Alquadeib B, et al. Retinal delivery of the protein kinase C-β inhibitor ruboxistaurin using non-invasive nanoparticles of polyamidoamine dendrimers. Pharmaceutics. 2022;14(7):1444. doi:10.3390/pharmaceutics14071444.

[84] Cerofolini L, Baldoneschi V, Dragoni E, Storai A, Mamusa M, Berti D, et al. Synthesis and binding monitoring of a new nanomolar PAMAM-based matrix metalloproteinases inhibitor (MMPIs). Bioorg Med Chem. 2017;25(3):1196-201. doi:10.1016/j.bmc.2016.11.028.

[85] Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: a versatile nanocarrier for drug delivery and targeting. Int J Pharm. 2018;548(1):707-20. doi:10.1016/j.ijpharm.2018.07.030.

[86] Kirkpatrick GJ, Plumb JA, Sutcliffe OB, Flint DJ, Wheate NJ. Evaluation of anionic half generation 3.5–6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J Inorg Biochem. 2011;105(8):1115-22. doi:10.1016/j.jinorgbio.2011.05.017.

[87] Bhadra D, Bhadra S, Jain S, Jain NK. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm. 2003;257(1-2):111-24. doi:10.1016/S0378-5173(03)00132-7.

[88] Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57(15):2215-37. doi:10.1016/j.addr.2005.09.019.

[89] Lin X, Zhou Y, Lv K, Wu W, Chen C. Nanomedicine-based ophthalmic drug delivery systems for the treatment of ocular diseases. Int J Nanomedicine. 2025;20:9221-49. doi:10.2147/IJN.S532074.

[90] Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng. 2022;16:18. doi:10.1186/s13036-022-00298-5.

[91] Boas U, Heegaard PM. Dendrimers in drug research. Chem Soc Rev. 2004;33(1):43-63. doi:10.1039/b309043b.

[92] Lin H, Liu Y, Kambhampati SP, Hsu CC, Kannan RM, Yiu SC. Subconjunctival dendrimer-drug therapy for the treatment of dry eye in rabbits with induced autoimmune dacryoadenitis. Ocul Surf. 2018;16(4):415-23. doi:10.1016/j.jtos.2018.05.004.

[93] Loiseau A, Raîche-Marcoux G, Maranda C, Bertrand N, Boisselier E. Animal models in eye research: focus on corneal pathologies. Int J Mol Sci. 2023;24(23):16661. doi:10.3390/ijms242316661.

[94] Yavuz B, Bozdağ Pehlivan S, Sümer Bolu B, Nomak Sanyal R, Vural İ, Ünlü N. Dexamethasone – PAMAM dendrimer conjugates for retinal delivery: preparation, characterization and in vivo evaluation. J Pharm Pharmacol. 2016;68(8):1010-20. doi:10.1111/jphp.12587.

[95] Gupta U, Agashe H, Asthana A, Jain NK. A review of in vitro-in vivo investigations on dendrimers: the novel nanoscopic drug carriers. Nanomedicine. 2006;2(2):66-73. doi:10.1016/j.nano.2006.04.002

[96] Mignani S, Shi X, Ceña V, Shcharbin D, Bryszewska M, Majoral JP. In vivo therapeutic applications of phosphorus dendrimers: state of the art. Drug Discov Today. 2021;26(3):677-89. doi:10.1016/j.drudis.2020.11.034.

[97] Edelhauser HF, Rowe-Rendleman CL, Robinson MR, Dawson DG, Chader GJ, Grossniklaus HE, et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci. 2010;51(11):5403-20. doi:10.1167/iovs.10-5392.

[98] Ashvattha Therapeutics. Ashvattha Therapeutics announces first patient enrolled in expanded phase 1/2 study of imaging agent [18F]OP-801 in additional neurological indications [Internet]. Redwood City (CA): Ashvattha Therapeutics; 2024 [cited 2025 Oct 4]. Available from: https://avttx.com/ashvattha-therapeutics-announces-first-patient-enrolled-in-expanded-phase-1-2-study-of-imaging-agent-18f-op-801-in-additional-neurological-indications/.

[99] A phase 2 study to evaluate the safety and efficacy of OP-101 in patients with COVID-19. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2020 Apr 27 [cited 2025 Oct 4]. Available from: https://clinicaltrials.gov/study/NCT04321980.

[100] A study to evaluate the safety, tolerability, and pharmacokinetics of D-4517.2 after subcutaneous administration in healthy participants. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2021 Oct 5 [cited 2025 Oct 4]. Available from: https://clinicaltrials.gov/study/NCT05105607.

[101] A phase 2 study of subcutaneous migaldendranib (D-4517.2) in subjects with neovascular age-related macular degeneration or diabetic macular edema. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2022 May 23 [cited 2025 Oct 4]. Available from: https://clinicaltrials.gov/study/NCT05387837.

[102] Pignatello R, Almeida H, Santonocito D, Puglia C. New challenges in ocular drug delivery. Pharmaceutics. 2024;16(6):794. doi:10.3390/pharmaceutics16060794.

[103] Chauhan A, Fitzhenry L, Serro AP. Recent advances in ophthalmic drug delivery. Pharmaceutics. 2022;14(10):2075. doi:10.3390/pharmaceutics14102075.

[104] Alamos-Musre S, Beltrán-Chacana D, Moyano J, Márquez-Miranda V, Duarte Y, Miranda-Rojas S, et al. From structure to function: the promise of PAMAM dendrimers in biomedical applications. Pharmaceutics. 2025;17(7):927. doi:10.3390/pharmaceutics17070927.

[105] Rajan PB, Koilpillai J, Narayanasamy D. Advancing ocular medication delivery with nano-engineered solutions: a comprehensive review of innovations, obstacles, and clinical impact. Cureus. 2024;16(8):e66476. doi:10.7759/cureus.66476.

[106] Mahaling B, Baruah N, Dinabandhu A. Drug delivery systems for infectious eye diseases: advancements and prospects. J Nanotheranostics. 2024;5(4):133-66. doi:10.3390/jnt5040010.

[107] Ashique S, Mishra N, Mohanto S, Gowda BHJ, Kumar S, Raikar AS, et al. Overview of processed excipients in ocular drug delivery: opportunities so far and bottlenecks. Heliyon. 2024;10(1):e23810. doi:10.1016/j.heliyon.2023.e23810.

[108] Wang W, Wang N, Zhao X, Su X, Liu Z. Recent advancements in polymer science for retinal diseases: new frontiers in drug delivery systems. APL Bioeng. 2025;9(2):020902. doi:10.1063/5.0264382.

[109] Rawat V, Dewangan S. Nanotechnology advancements in treating ocular infectious diseases: a paradigm shift in therapeutic strategies. Int J Adv Res Eng Sci Manag. 2023;11(12):231143. doi:10.56025/IJARESM.2023.1112231143.

[110] Savvidou G, Spyratou E, Efstathopoulos EP. Nanomedicine: pioneering a new frontier in neuro-ophthalmology. Recent Prog Mater. 2024;6(3):022. doi:10.21926/rpm.2403022.

[111] Souto EB, Dias-Ferreira J, López-Machado A, Ettcheto M, Cano A, Espuny AC, et al. Advanced formulation approaches for ocular drug delivery: state-of-the-art and recent patents. Pharmaceutics. 2019;11(9):460. doi:10.3390/pharmaceutics11090460.

[112] Tang Z, Fan X, Chen Y, Gu P. Ocular nanomedicine. Adv Sci (Weinh). 2022;9(7):2003699. doi:10.1002/advs.202003699.

[113] Wu KY, Tan K, Akbar D, Choulakian MY, Tran SD. A new era in ocular therapeutics: advanced drug delivery systems for uveitis and neuro-ophthalmologic conditions. Pharmaceutics. 2023;15(7):1952. doi:10.3390/pharmaceutics15071952.

Published

29-11-2025

How to Cite

VERMA, S., SILORI, V., KUMAR, P., & KANAUJAYA, M. (2025). DENDRIMERS IN OCULAR DRUG DELIVERY: A COMPREHENSIVE REVIEW. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.56820

Issue

Section

Review Article(s)

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.