SIRTUINS: POTENTIAL PHARMACOLOGICAL TARGET IN VARIOUS DISORDERS

Authors

  • REEMA MITRA Chandigarh College of Pharmacy, CGC Landran, Mohali, Punjab-140307, India https://orcid.org/0000-0001-8436-786X
  • PRATIBHA SHARMA Chandigarh College of Pharmacy, CGC Landran, Mohali, Punjab-140307, India

DOI:

https://doi.org/10.22159/ijpps.2026v18i1.56201

Keywords:

Cellular metabolism, Intracellular signalling peptides and proteins, Protein deacetylase, Sirtuins

Abstract

Sirtuins are a group of NAD+-dependent protein deacetylases that play an important role in cellular homeostasis, with wide-ranging effects on health and disease. Gene expression, metabolism, DNA repair, stress responses, and longevity are just a few of the biological processes that are affected by these evolutionarily conserved enzymes. Seven sirtuin subtypes (SIRT1–SIRT7) comprise the sirtuin family, and each has unique enzymatic properties and subcellular locations. Sirtuins are essential agents in chromatin remodelling, coordinating epigenetic changes that affect gene transcription and cellular destiny. Additionally, they play a crucial role in controlling pathways for nutrition sensing and energy homeostasis, which regulate the cellular metabolism. Notably, sirtuins participate in DNA repair and affect cell cycle progression, both of which are essential for maintaining genomic stability. This article offers a thorough overview of sirtuin biology, with an emphasis on their numerous roles, cellular localization, and consequences in various physiological and pathological circumstances.

Downloads

Download data is not yet available.

References

1. Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A, Altucci L. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics. 2016; 8:1-21.doi.org/10.1186/s13148-016-0224-3.

2. Carafa V, Nebbioso A, Altucci L. Sirtuins and disease: the road ahead. Front.Pharmacol.2012;3:4.doi.org/10.3389/fphar.2012.00004

3. Wu, QJ., Zhang, TN., Chen, HH. et al. The sirtuin family in health and diseases. Sig Transduct Target Ther. 2022;7:402.https://doi.org/10.1038/s41392-022-01257-8

4. Feldman JL, Dittenhafer-Reed KE, Denu JM. Sirtuin catalysis and regulation. J. Biol. Chem. 2012;287(51):42419-27.doi.org/10.1074/jbc.R112.378877

5. Wu, QJ., Zhang, TN., Chen, HH. et al. The sirtuin family in health and disease. Sig Transduct Target Ther 7, 402 (2022). https://doi.org/10.1038/s41392-022-01257-8

6. Gomes P, Outeiro TF, Cavadas C. Emerging role of sirtuin 2 in the regulation of mammalian metabolism. TrendsPharmacolSci. 2015;36(11):756-68.doi.org/10.1016/j.tips.2015.08.001

7. Chand, J., Kandy, A. T., Prasad, K., Mathew, J., Sherin, F., & Subramanian, G. In silico preparation and in vitro studies of benzylidene-based hydroxybenzyl urea derivatives as free radical scavengers in Parkinson’s disease. IntJAppPharm. 2024;16(3): 217–224. https://doi.org/10.22159/ijap.2024v16i3.50628

8. R, Sowndarya, and Doss V.Evaluation of sirtuin 3 biomarker before and after exercise regimen in chronic unpredictable mild stress-induced depressed rats. Asian J. Pharm. Clin. Res 2019;12(1):180-4.https://doi.org/10.22159/ajpcr.2019.v12i1.28669.

9. Beauharnois JM, Bolívar BE, Welch JT. Sirtuin 6: a review of biological effects and potential therapeutic properties. Mol. BioSyst. 2013;9(7):1789-806.doi.org/10.1039/C3MB00001J

10. Klein MA, Denu JM. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. J. Biol. Chem.2020;295(32):11021-41.doi.org/10.1074/jbc.REV120.011438

11. Li XT, Zhang YP, Zhang MW, Zhang ZZ, Zhong JC. Sirtuin 7 serves as a promising therapeutic target for cardiorenal diseases. Eur. J. Pharmacol. 2022; 925: 174977.doi.org/10.1016/j.ejphar.2022.174977

12. Villalba JM, Alcaín FJ. Sirtuin activators and inhibitors. Biofactors. 2012; 38(5):349-59.doi.org/10.1002/biof.1032

13. Aldisa, Olivia, et al. “Virtual Screening of Indonesian Herbal Database to Find Sirtuin 1 Activators Using the Docking Method”. Asian J. Pharm. Clin Res. 2017; 10 (17): 158-62, https://doi.org/10.22159/ajpcr. 2017.v10s5.23121.

14. Frémont L. Biological effects of resveratrol. Life Sci. 2000; 66(8):663-73.https://doi.org/10.1016/S0024-3205(99)00410-5

15. Bhat KP, Kosmeder JW, Pezzuto JM. Biological effects of resveratrol. Antioxid Redox Signal. 2001 ; 3(6):1041-64.doi.org/10.1089/152308601317203567

16. Walle T. Bioavailability of resveratrol. Ann. New York Acad. Sci. 2011; 1215(1):9-15.doi.org/10.1111/j.1749-6632.2010.05842.x

17. Szkudelska K, Szkudelski T. Resveratrol, obesity, and diabetes. Eur. J. Pharmacol. 2010; 635(1-3):1-8. https://doi.org/10.1016/j.ejphar.2010.02.054

18. Kelly GS. Quercetin. Monograph. Altern Med Rev. 2011; 16 (2):172-94. 21649459.

19. Ungurianu A, Zanfirescu A, Margină D. Exploring the therapeutic potential of quercetin: A focus on its sirtuin-mediated benefits. Phytother Res. 2024; 38 (5):2361-2387. doi: 10.1002/ptr.8168

20. Zhang M, Swarts SG, Yin L, Liu C, Tian Y, Cao Y, Swarts M, Yang S, Zhang SB, Zhang K, Ju S. Antioxidant properties of quercetin. In Oxygen transport to tissue XXXII 2011 (pp. 283-289). Springer US. doi.org/10.1007/978-1-4419-7756-4_38

21. Lakhanpal P, Rai DK. Quercetin: A Versatile Flavonoid. IJMU.2007;2(2):22-37.https://gjmpbu.org/ijmu/paper05_jul-dec2007.html

22. Shan Y, Zhang S, Gao B, Liang S, Zhang H, Yu X, Zhao J, Ye L, Yang Q, Shang W. Adipose Tissue SIRT1 Regulates Insulin Sensitizing and Anti-Inflammatory Effects of Berberine. Front Pharmacol. 2020; 11:591227. doi: 10.3389/fphar.2020.591227

23. Li D, Yang C, Zhu JZ, Lopez E, Zhang T, Tong Q, Peng C, Lin LG. Berberine remodels adipose tissue to attenuate metabolic disorders by activating sirtuin 3. Acta Pharmacol Sin. 2022 May; 43(5):1285-1298. doi: 10.1038/s41401-021-00736-y

24. Grynkiewicz G, Demchuk OM. New Perspectives for Fisetin. Front. Chem. 2019; 30 (7):697.doi.org/10.3389/fchem.2019.00697

25. Kim SC, Kim YH, Son SW, Moon EY, Pyo S, Um SH. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells. Biochem Biophys Res Commun. 2015; 467(4):638-44. doi: 10.1016/j.bbrc.2015.10.094.

26. Wang X, Li X, Zhou J, Lei Z, Yang X. Fisetin suppresses chondrocyte senescence and attenuates osteoarthritis progression by targeting sirtuin 6. Chem Biol Interact. 2024 Feb 25; 390:110890. doi: 10.1016/j.cbi.2024.110890

27. Maher P. Fisetin Acts on Multiple Pathways to Reduce the Impact of Age and Disease on CNS Function. FrontBiosci. 2015; 7:58.doi: https://10.2741/s425

28. Prasath GS, Pillai SI, Subramanian SP. Fisetin Improves Glucose Homeostasis Through the Inhibition of Gluconeogenic Enzymes in Hepatic Tissues of Streptozotocin Induced Diabetic Rats. Eur. J. Pharmacol. 2014; 740:248-54.doi.org/10.1016/j.ejphar.2014.06.065

29. Zendedel E, Butler AE, Atkin SL, Sahebkar A. Impact of curcumin on sirtuins: A review. J Cell Biochem. 2018;119(12):10291-10300. doi: 10.1002/jcb.27371.

30. Grabowska W., Suszek M., Wnuk M., Lewinska A., Wasiak E., Sikora E., Bielak-Zmijewska A. Curcumin elevates sirtuin level but does not postpone in vitro senescence of human cells building the vasculature. Oncotarget. 2016; 7: 19201-19213

31. Rajasekaran A, Sivagnanam G, Xavier R. Nutraceuticals as therapeutic agents: A Review. RJPT. 2008; 1(4):171-174. https://doi.org/10.5958/0974-360X

32. Alcaín FJ, Villalba JM. Sirtuin inhibitors. Expert Opin Ther Pat. 2009; 19(3):283-94.doi.org/10.1517/13543770902755111

33. Posakony J, Hirao M, Stevens S, Simon JA, Bedalov A. Inhibitors of Sir2: evaluation of splitomicin analogues. J. Med. Chem. 2004; 47(10):2635-44.doi.org/10.1021/jm030473r

34. Neugebauer RC, Uchiechowska U, Meier R, Hruby H, Valkov V, Verdin E, Sippl W, Jung M. Structure–activity studies on splitomicin derivatives as sirtuin inhibitors and computational prediction of binding mode. J. Med. Chem. 2008; 51(5):1203-13.doi.org/10.1021/jm700972e

35. Tsai YF, Yu HP, Chang WY, Liu FC, Huang ZC, Hwang TL. Sirtinol inhibits neutrophil elastase activity and attenuates lipopolysaccharide-mediated acute lung injury in mice. Sci.Rep. 2015; 5(1):8347. doi.org/10.1038/srep08347

36. Medda F, Russell RJ, Higgins M, McCarthy AR, Campbell J, Slawin AM, Lane DP, Lain S, Westwood NJ. Novel cambinolanalogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity. J. Med. Chem. 2009; 52(9):2673-82.doi.org/10.1021/jm8014298

37. Trapp J, Meier R, Hongwiset D, Kassack MU, Sippl W, Jung M. Structure–activity studies on suramin analogs as inhibitors of NAD+-dependent histone deacetylases (sirtuins). Chem. Med. Chem. 2007; 2(10):1419-31.doi.org/10.1002/cmdc.200700003

38. Carafa V, Nebbioso A, Altucci L. Sirtuins and disease: the road ahead. Front Pharmacol. 2012 Jan 31; 3:4. doi: 10.3389/fphar.2012.00004

39. Funk JA, Schnellmann RG. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia–reperfusion injury. Toxicol.Appl.Pharmacol. 2013; 273(2):345-54.https://doi.org/10.1016/j.taap.2013.09.026

40. Zhou X, Fan LX, Sweeney WE, Denu JM, Avner ED, Li X. Sirtuin 1 inhibition delays cyst formation in autosomal-dominant polycystic kidney disease. J. Clin. Invest. 2013; 123(7):3084-98. doi.10.1172/JCI64401

41. Zhou X, Fan LX, Li K, Ramchandran R, Calvet JP, Li X. SIRT2 regulates ciliogenesis and contributes to abnormal centrosome amplification caused by loss of polycystin-1. Hum MolGenet. 2014; 23(6):1644-55.doi.org/10.1093/hmg/ddt556

42. Liu R, Zhong Y, Li X, Chen H, Jim B, Zhou MM, Chuang PY, He JC. Role of transcription factor acetylation in diabetic kidney disease. Diabetes. 2014; 63(7):2440-53.doi.org/10.2337/db13-1810

43. Azminah, A., Radji, M., Mun’im, A., Syahdi, R. R., &Yanuar, A. In Silico Study of Sirt1 Activators Using a Molecular Dynamic Approach. Int. J. Appl. Pharm. 2019; 11(1): 237–245. https://doi.org/10.22159/ijap.2019.v11s1.19266

44. Raval AP, Dave KR, Pérez-Pinzon MA. Resveratrol Mimics Ischemic Preconditioning in The Brain. J. Cereb. Blood Flow Metab. 2006; 26(9):1141-7.doi.org/10.1038/sj.jcbfm.9600262

45. Raval AP, Lin HW, Dave KR, DeFazio RA, Morte DD, Kim EJ, Perez-Pinzon MA. Resveratrol and Ischemic Preconditioning in the Brain. Curr. Med. Chem. 2008; 15(15):1545-51.doi.org/10.2174/092986708784638861

46. Shindler KS, Ventura E, Rex TS, Elliott P, Rostami A. SIRT1 activation confers neuroprotection in experimental optic neuritis. InvestOphthalmolVisSci. 2007; 48(8):3602-9.doi.org/10.1167/iovs.07-0131

47. Qin W, Chachich M, Lane M, Roth G, Bryant M, de Cabo R, Ottinger MA, Mattison J, Ingram D, Gandy S, Pasinetti GM. Calorie restriction attenuates Alzheimer's disease type brain amyloidosis in Squirrel monkeys (Saimirisciureus). JAD. 2006;10(4):417-22.10.3233/JAD-2006-10411

48. Julien C, Tremblay C, Emond V, Lebbadi M, Salem Jr N, Bennett DA, Calon F. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2009; 68(1):48-58.doi.org/10.1097/NEN.0b013e3181922348

49. Duan W, Mattson MP. Dietary restriction and 2‐deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J. Neurosci. Res. 1999; (2):195-206.doi.org/10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P

50. Pallas M, Pizarro JG, Gutierrez-Cuesta J, Crespo-Biel N, Alvira D, Tajes M, Yeste-Velasco M, Folch J, Canudas AM, Sureda FX, Ferrer I. Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience. 2008; 154(4):1388-97.https://doi.org/10.1016/j.neuroscience.2008.04.065

51. Okawara M, Katsuki H, Kurimoto E, Shibata H, Kume T, Akaike A. Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem. Pharmacol. 2007; 73(4):550-60.https://doi.org/10.1016/j.bcp.2006.11.003

52. Sorolla MA, Nierga C, Rodríguez-Colman MJ, Reverter-Branchat G, Arenas A, Tamarit J, Ros J, Cabiscol E. Sir2 is induced by oxidative stress in a yeast model of Huntington disease and its activation reduces protein aggregation. Arch. Biochem. Biophys. 2011; 510(1):27-34.https://doi.org/10.1016/j.abb.2011.04.002

53. Perry VH, Lunn ER, Brown MC, Cahusac S, Gordon S. Evidence that the rate of Wallerian degeneration is controlled by a single autosomal dominant gene. Eur. J. Neurosci. 1990; 2(5):408-13.doi.org/10.1111/j.1460-9568.1990.tb00433.x

54. Avery MA, Sheehan AE, Kerr KS, Wang J, Freeman MR. WldS requires Nmnat1 enzymatic activity and N16–VCP interactions to suppress Wallerian degeneration. J. Cell Biol. 2009; 184(4):501-13.doi.org/10.1083/jcb.200808042

55. Chalkiadaki A, Guarente L. The multifaceted functions of sirtuins in cancer. Nature Reviews Cancer. 2015; 15(10):608-24. doi.org/10.1038/nrc3985

56. Roth M, Chen W. Sorting out functions of sirtuins in cancer. Oncogene. 2014; 33(13):1609-20. doi.org/10.1038/onc.2013.120

57. Choi HN, Bae JS, Jamiyandorj U, Noh SJ, Park HS, Jang KY, Chung MJ, Kang MJ, Lee DG, Moon WS. Expression and role of SIRT1 in hepatocellular carcinoma. Oncology reports. 2011; 26(2):503-10. doi.org/10.3892/or.2011.1301

58. Zhao G, Cui J, Zhang JG, Qin Q, Chen Q, Yin T, Deng SC, Liu Y, Liu L, Wang B, Tian K. SIRT1 RNAi knockdown induces apoptosis and senescence, inhibits invasion and enhances chemosensitivity in pancreatic cancer cells. Gene therapy. 2011; 18(9):920-8. doi.org/10.1038/gt.2011.81

59. Zhang JG, Zhao G, Qin Q, Wang B, Liu L, Liu Y, Deng SC, Tian K, Wang CY. Nicotinamide prohibits proliferation and enhances chemosensitivity of pancreatic cancer cells through deregulating SIRT1 and Ras/Akt pathways. Pancreatology. 2013; 13(2):140-6.doi.org/10.1016/j.pan.2013.01.001

60. Liu C, Huang Z, Jiang H, Shi F. The sirtuin 3 expression profile is associated with pathological and clinical outcomes in colon cancer patients. BioMed Res.Int. 2014; 2014: 871263. doi: 10.1155/2014/871263

61. Wang S, Chen X, Zhang Z, Wu Z. MicroRNA-1225-5p inhibits the development and progression of thyroid cancer via targeting sirtuin 3. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2019; 74(7):423-7.doi.org/10.1691/ph.2019.9411

62. Li D, Bi FF, Chen NN, Cao JM, Sun WP, Zhou YM, Li CY, Yang Q. A novel crosstalk between BRCA1 and sirtuin 1 in ovarian cancer. Sci.Rep. 2014; 4(1):6666. doi.org/10.1038/srep06666

63. Tian J, Yuan L. Sirtuin 6 inhibits colon cancer progression by modulating PTEN/AKT signalling. Biomed. Pharmacother. 2018; 106:109-16. doi.org/10.1016/j.biopha.2018.06.070.Sun X, Wang S, Li Q. Comprehensive analysis of expression and prognostic value of sirtuins in ovarian cancer. Front. Genet. 2019;10:879. doi.org/10.3389/fgene.2019.00879

Published

12-12-2025

How to Cite

MITRA, REEMA, and PRATIBHA SHARMA. “SIRTUINS: POTENTIAL PHARMACOLOGICAL TARGET IN VARIOUS DISORDERS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 18, no. 1, Dec. 2025, doi:10.22159/ijpps.2026v18i1.56201.

Issue

Section

Review Article(s)

Similar Articles

<< < 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.