NANOEMULSION AS A DRUG DELIVERY SYSTEM OF ANTICANCER DRUG
DOI:
https://doi.org/10.22159/ajpcr.2025v18i4.53759Keywords:
Nanoemulsion, Cancer;, Targeted delivery, Cytotoxic agents, Nano-carriersAbstract
Nanoemulsions are isotropic systems made up of nanoscale droplets (about 200 nm in size) created by combining two immiscible liquids with the aid of emulsifiers. They are often regarded as harmless excipients and are made to enhance the release of active medicinal compounds. Improving drug distribution to specific areas is the main goal of employing nanoemulsions in cancer treatment. In addition to increasing bioavailability, nanoemulsions reduce adverse effects on healthy cells by encasing medications in a closed structure. This is especially crucial because, in the absence of such formulations, different medications fall short of their intended targets. The study shows that by increasing the solubility and bioavailability of anticancer medications, nanoemulsions can greatly improve their delivery. This is important because a lot of anticancer medications have low solubility, which reduces their ability to effectively target cancer cells. Nanoemulsions have been shown to effectively target tumor cells while minimizing the impact on healthy tissues. This targeted approach helps overcome the common issue of multidrug resistance seen in cancer treatments, as the nanoemulsions can be modified with specific ligands to focus on tumor cells. Targeting tumor cells and preventing multidrug resistance are two benefits of using nanoemulsions. Besides, hydrophilic and hydrophobic compounds can be encapsulated in nanoemulsions to satisfy a range of needs. Therefore, nanoemulsions are a promising new approach to cancer treatment. This review provides an overview of nanoemulsion in cancer therapeutics, aiming to highlight the current status of this technology.
Downloads
References
Ganta S, Talekar M, Singh A, Coleman TP, Amiji MM. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy. AAPS PharmSciTech. 2014;15(3):694-708.
McClements DJ. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter. 2012 Jan 18;8(6):1719-29.
Çetin O, Güngör B, İçhedef Ç, Parlak Y, Bilgin ES, Üstün F, et al. Development of a radiolabeled folate-mediated drug delivery system for effective delivery of docetaxel. ACS Omega. 2023 Jul 18;8(28):25316. PMC10357535
Shaikh TY, Lodhi S. Preparation, characterization and evaluation of myricetin-loaded nanoemulsion for therapeutic efficacy in wound healing. Int J Appl Pharm. 2024 Jan 7;16(1):61-70.
Article O, Nantarat T, Chansakaow S, Leelapornpisid P. Optimization, characterization and stability of essential oils blend loaded nanoemulsions by pic technique for anti-tyrosinase activity. Int J Pharm Pharm Sci. 2015 Mar 1;7:308-12.
Tiwari S, Tan YM, Amiji M. Preparation and in vitro characterization of multifunctional nanoemulsions for simultaneous MR imaging and targeted drug delivery. J Biomed Nanotechnol. 2006 Nov 22;2(3):217-24.
Ramadoss K, Vadivel V, Abishek V, Lakshmi K. Magnetic nanoparticle-based approaches in cancer therapy-a critical review. Int J Appl Pharm. 2022 Nov 7;14(6):21-7.
Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010 Jul;9(7):537-50.
Tan W, Wang H, Chen Y, Zhang X, Zhu H, Yang C, et al. Molecular aptamers for drug delivery. Trends Biotechnol. 2011 Dec;29(12):634. PMC3218254
Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E, Hong S, et al. Targeted nanoparticles for cancer therapy. Nano Today. 2007 Jun;2(3):14-21.
Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem. 2005 Mar 15;338(2):284-93.
Praveen Kumar G, Divya A, Kumar GP. Nanoemulsion based targeting in cancer therapeutics. Med Chem. 2015;5(6):272-84.
Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy. Adv Drug Deliv Rev. 2004 Apr 29;56(8):1067-84.
Low PS, Antony AC. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev. 2004 Apr 29;56(8):1055-8.
Toub N, Malvy C, Fattal E, Couvreur P. Innovative nanotechnologies for the delivery of oligonucleotides and siRNA. Biomed Pharmacother. 2006;60(9):607-20.
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2013;66:2. PMC4219254
Zhang C, Tang N, Liu XJ, Liang W, Xu W, Torchilin VP. siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J Control Release. 2006 May 15;112(2):229-39.
Jain RK. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science. 2005 Jan 7;307(5706):58-62. 19. Al-Abd AM, Lee SH, Kim SH, Cha JH, Park TG, Lee SJ, et al. Penetration and efficacy of VEGF siRNA using polyelectrolyte complex micelles in a human solid tumor model in-vitro. J Control Release. 2009 Jul 20;137(2):130-5.
Wooster TJ, Golding M, Sanguansri P. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir. 2008 Nov 18;24(22):12758-65.
McClements DJ. Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter. 2011 Mar 7;7(6):2297-316.
Dean M. ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia. 2009;14(1):3-9.
Talekar M, Ganta S, Singh A, Amiji M, Kendall J, Denny WA, et al. Phosphatidylinositol 3-kinase inhibitor (PIK75) containing surface functionalized nanoemulsion for enhanced drug delivery, cytotoxicity and pro-Apoptotic activity in ovarian cancer cells. Pharm Res. 2012 Oct;29(10):2874-86.
Mohammad IS, He W, Yin L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed Pharmacother. 2018 Apr 1;100:335-48.
Chanamai R, McClements DJ. Impact of weighting agents and sucrose on gravitational separation of beverage emulsions. J Agric Food Chem. 2000;48(11):5561-5.
McClements DJ. Emulsion design to improve the delivery of functional lipophilic components. Annu Rev Food Sci Technol. 2010 Apr;1(1):241-69.
Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008 Mar 20;126(3):187-204.
Wang CY, Huang L. pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc Natl Acad Sci U S A. 1987;84(22):7851. PMC299420
Modi S, Anderson BD. Determination of drug release kinetics from nanoparticles: Overcoming pitfalls of the dynamic dialysis method. Mol Pharm. 2013 Aug 5;10(8):3076-89.
Qian C, McClements DJ. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocoll. 2011;25(5):1000-8.
Lovelyn C, Attama AA, Lovelyn C, Attama AA. Current state of nanoemulsions in drug delivery. J Biomater Nanobiotechnol. 2011 Dec 9;2(5):626-39.
Arias JL, Ruiz MA, López-Viota M, Delgado ÁV. Poly(alkylcyanoacrylate) colloidal particles as vehicles for antitumour drug delivery: A comparative study. Colloids Surf B Biointerfaces. 2008 Mar 15;62(1):64-70.
Wehrung D, Geldenhuys WJ, Oyewumi MO. Effects of gelucire content on stability, macrophage interaction and blood circulation of nanoparticles engineered from nanoemulsions. Colloids Surf B Biointerfaces. 2012 Jun 1;94:259-65.
Zahr AS, Davis CA, Pishko MV. Macrophage uptake of core-shell nanoparticles surface modified with poly (ethylene glycol). Langmuir. 2006 Sep 12;22(19):8178-85.
Stolnik S, Daudali B, Arien A, Whetstone J, Heald CR, Garnett MC, et al. The effect of surface coverage and conformation of poly (ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochim Biophys Acta Biomembranes. 2001 Oct 1;1514(2):261-79.
Alvarez-Lorenzo C, Rey-Rico A, Sosnik A, Taboada P, Concheiro A. Poloxamine-based nanomaterials for drug delivery. Front Biosci (Elite Ed). 2010 Jan 1;2(2):424-40.
Ganta S, Deshpande D, Korde A, Amiji M. A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol Membr Biol. 2010 Oct;27(7):260-73.
Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine (Lond). 2008 Oct;3(5):703-17.
Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsions: Formation, structure, and physical properties. J Phys Condensed Matter. 2006 Oct 18;18(41):R635.
Qi K, Al-Haideri M, Seo T, Carpentier YA, Deckelbaum RJ. Effects of particle size on blood clearance and tissue uptake of lipid emulsions with different triglyceride compositions. JPEN J Parenter Enteral Nutr. 2003;27(1):58-64.
Lawler J. Introduction to the tumour microenvironment review series. J Cell Mol Med. 2009 Aug;13(8a):1403. PMC3073444
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010 Dec 1;148(2):135-46.
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011 May 19;473(7347):298-307.
Padera TP, Stoll BR, Tooredman JB, Capen D, Di Tomaso E, Jain RK. Pathology: Cancer cells compress intratumour vessels. Nature. 2004 Feb 19;427(6976):695.
Qadir A, Faiyazuddin MD, Talib Hussain MD, Alshammari TM, Shakeel F. Critical steps and energetics involved in a successful development of a stable nanoemulsion. J Mol Liq. 2016 Feb 1;214:7-18.
Caron WP, Lay JC, Fong AM, La-Beck NM, Kumar P, Newman SE, et al. Translational studies of phenotypic probes for the mononuclear phagocyte system and liposomal pharmacologys. J Pharmacol Exp Ther. 2013 Dec;347(3):599-606. PMC3836305
Allen TM, Martin FJ. Advantages of liposomal delivery systems for anthracyclines. Semin Oncol. 2004;31(6 Suppl 13):5-15.
Faria M, Björnmalm M, Thurecht KJ, Kent SJ, Parton RG, Kavallaris M, et al. Minimum information reporting in bio-nano experimental literature. Nat Nanotechnol. 2018 Sep 1;13(9):777-85.
Article R, Gokul M, Esakki A. Green synthesis and characterization of isolated flavonoid mediated copper nanoparticles by using Thespesia populnea leaf extract and its evaluation of anti-oxidant and anti-cancer activity. Int J Chem Res. 2022 Jan 1;6:15-32.
Kim B, Pena CD, Auguste DT. Targeted lipid nanoemulsions encapsulating epigenetic drugs exhibit selective cytotoxicity on CDH1-/FOXM1+ triple negative breast cancer cells. Mol Pharm. 2019 May 6;16(5):1813-26.
Najlah M, Kadam A, Wan KW, Ahmed W, Taylor KM, Elhissi AM. Novel paclitaxel formulations solubilized by parenteral nutrition nanoemulsions for application against glioma cell lines. Int J Pharm. 2016 Jun 15;506(1-2):102-9.
Chang H, Chen BH. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. Int J Nanomedicine. 2015 Aug 6;10:5059. PMC4531038
Klang V, Matsko NB, Valenta C, Hofer F. Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron. 2012 Feb;43(2-3):85-103.
Bae YH. Drug targeting and tumor heterogeneity. J Control Release. 2009 Jan 5;133(1):2-3.
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007 Dec;2(12):751-60.
Rosi Cappellani M, Perinelli DR, Pescosolido L, Schoubben A, Cespi M, Cossi R, et al. Injectable nanoemulsions prepared by high pressure homogenization: Processing, sterilization, and size evolution. ApNan. 2018 Aug 1;8(6):1483-91.
Ganesan P, Karthivashan G, Park SY, Kim J, Choi DK. Microfluidization trends in the development of nanodelivery systems and applications in chronic disease treatments. Int J Nanomedicine. 2018;13:6109-21.
Friberg SE, Corkery RW, Blute IA. Phase inversion temperature (PIT) emulsification process. J Chem Eng Data. 2011 Dec 8;56(12):4282-90.
Sánchez-López E, Guerra M, Dias-Ferreira J, Lopez-Machado A, Ettcheto M, Cano A, et al. Current applications of nanoemulsions in cancer therapeutics. Nanomaterials. 2019 Jun 1;9(6):821. PMC6632105
Lefebvre G, Riou J, Bastiat G, Roger E, Frombach K, Gimel JC, et al. Spontaneous nano-emulsification: Process optimization and modeling for the prediction of the nanoemulsion’s size and polydispersity. Int J Pharm. 2017 Dec 20;534(1-2):220-8.
Modarres-Gheisari SM, Gavagsaz-Ghoachani R, Malaki M, Safarpour P, Zandi M. Ultrasonic nano-emulsification-A review. Ultrason Sonochem. 2019 Apr 1;52:88-105.
Bilbao-Sáinz C, Avena-Bustillos RJ, Wood DF, Williams TG, McHugh TH. Nanoemulsions prepared by a low-energy emulsification method applied to edible films. J Agric Food Chem. 2010;58(22):11932-8.
Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. Int J Pharm. 2004 Aug 6;280(1-2):241-51.
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016 Apr 26;1:16014.
Mendoza R, Banerjee I, Reghupaty SC, Yetirajam R, Manna D, Sarkar D. Isolation and culture of mouse hepatocytes and Kupffer cells (KCs). Methods Mol Biol. 2022;2455:73-84.
Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol. 2008 Jan;26(1):57-64.
Yuan Y, Gao Y, Zhao J, Mao L. Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int. 2008;41(1):61-8.
Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar ATransferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm. 2010;398(1-2):190-203.
Milane L, Duan Z, Amiji M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol Pharm. 2011 Feb 7;8(1):185-203.
Xu W, Siddiqui IA, Nihal M, Pilla S, Rosenthal K, Mukhtar H, et al. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials. 2013 Jul;34(21):5244-53.
Jiang G, Tang S, Chen X, Ding F, Jiang G, Tang S, et al. Enhancing the receptor-mediated cell uptake of PLGA nanoparticle for targeted drug delivery by incorporation chitosan onto the particle surface. J Nanoparticle Res. 2014;16(6):2453.
Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615-27.
Hennessy M, Spiers JP. A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol Res. 2007 Jan;55(1):1-15.
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018 Mar 16;3(1):1-19.
Ngandeu Neubi GM, Opoku-Damoah Y, Gu X, Han Y, Zhou J, Ding Y. Bio-inspired drug delivery systems: An emerging platform for targeted cancer therapy. Biomater Sci. 2018 May 1;6(5):958-73.
Shaima C, Moorthi PV, Kutty SN. In vitro anticancer activity of 5’ fluorouracil coated chitosan nanoparticle. Int J Curr Pharm Rev Res. 2016;8(4):6-8.
Rajaram S, Dharmalingam SR, Santhose Rani A, Sapthasri R, Varsha D. Prednisolone encapsulated superparamagnetic iron oxide nanoparticles for target drug delivery-design and quantification. Asian J Pharm Clin Res. 2019 Nov 7;12:126-31.
Jiao M, Zhang P, Meng J, Li Y, Liu C, Luo X, et al. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomater Sci. 2018 Mar 26;6(4):726-45.
Ma Y, Liu D, Wang D, Wang Y, Fu Q, Fallon JK, et al. Combinational delivery of hydrophobic and hydrophilic anticancer drugs in single nanoemulsions to treat MDR in cancer. Mol Pharm. 2014 Aug 4;11(8):2623-30.
Mahato R. Nanoemulsion as targeted drug delivery system for cancer therapeutics. J Pharm Sci Pharmacol. 2017 May 11;3(2):83-97.
Verma P, Meher JG, Asthana S, Pawar VK, Chaurasia M, Chourasia MK. Perspectives of nanoemulsion assisted oral delivery of docetaxel for improved chemotherapy of cancer. Drug Deliv. 2016 Feb 12;23(2):479- 88.
Hörmann K, Zimmer A. Drug delivery and drug targeting with parenteral lipid nanoemulsions-A review. J Control Release. 2016 Feb 10;223:85-98.
Clares B, Calpena AC, Parra A, Abrego G, Alvarado H, Fangueiro JF, et al. Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: Effect on skin permeation. Int J Pharm. 2014 Oct 1;473(1-2):591-8.
Asmawi AA, Salim N, Ngan CL, Ahmad H, Abdulmalek E, Masarudin MJ, et al. Excipient selection and aerodynamic characterization of nebulized lipid-based nanoemulsion loaded with docetaxel for lung cancer treatment. Drug Deliv Transl Res. 2019 Apr 15;9(2):543-54.
Moura JA, Valduga CJ, Tavares ER, Kretzer IF, Maria DA, Maranhão RC. Novel formulation of a methotrexate derivative with a lipid nanoemulsion. Int J Nanomedicine. 2011 Oct;6:2285. PMC3205125
Winter E, Dal Pizzol C, Locatelli C, Silva AH, Conte A, Chiaradia- Delatorre LD, et al. In vitro and in vivo effects of free and chalcones-loaded nanoemulsions: insights and challenges in targeted cancer chemotherapies. Int J Environ Res Public Health. 2014 Sep 26;11(10):10016. PMC4210964
Banerjee I, De M, Dey G, Bharti R, Chattopadhyay S, Ali N, et al. A peptide-modified solid lipid nanoparticle formulation of paclitaxel modulates immunity and outperforms dacarbazine in a murine melanoma model. Biomater Sci. 2019 Feb 26;7(3):1161-78.
Natesan S, Sugumaran A, Ponnusamy C, Thiagarajan V, Palanichamy R, Kandasamy R. Chitosan stabilized camptothecin nanoemulsions: Development, evaluation and biodistribution in preclinical breast cancer animal mode. Int J Biol Macromol. 2017 Nov 1;104(Pt B):1846-52.
Kretzer IF, Maria DA, Guido MC, Contente TC, Maranhão RC. Simvastatin increases the antineoplastic actions of paclitaxel carried in lipid nanoemulsions in melanoma-bearing mice. Int J Nanomedicine. 2016 Mar;11:885. PMC4788363
Pahwa R, Sharma G, Chhabra J, Haider T, Anitha K, Mishra N. Nanoemulsion therapy: A paradigm shift in lung cancer management. J Drug Deliv Sci Technol. 2024 Nov 1;101:106227.
Banerjee I, De K, Mukherjee D, Dey G, Chattopadhyay S, Mukherjee M, et al. Paclitaxel-loaded solid lipid nanoparticles modified with Tyr-3- octreotide for enhanced anti-angiogenic and anti-glioma therapy. Acta Biomater. 2016 Jul 1;38:69-81.
Banerjee I, Behera A, De K, Chattopadhyay S, Sachdev SS, Sarkar B, et al. Synthesis, characterization, biodistribution and scintigraphy of 99mTc-paclitaxel: A potential tracer of paclitaxel. J Radioanal Nucl Chem. 2015 Mar 27;304(2):633-43.
Monge-Fuentes V, Muehlmann LA, Longo JP, Silva JR, Fascineli ML, Azevedo RB, et al. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma. J Photochem Photobiol B. 2017 Jan 1;166:301-10.
Journo-Gershfeld G, Kapp D, Shamay Y, Kopeček J, David A. Hyaluronan oligomers-HPMA copolymer conjugates for targeting paclitaxel to CD44-overexpressing ovarian carcinoma. Pharm Res. 2012 Apr;29(4):1121-33.
Liebmann J, Cook JA, Mitchell JB. Cremophor EL. Solvent for paclitaxel, and toxicity. Lancet. 1993 Dec 4;342(8884):1428.
Matsubara Y, Katoh S, Taniguchi H, Oka M, Kadota J, Kohno S. Expression of CD44 variants in lung cancer and its relationship to hyaluronan binding. J Int Med Res. 2000;28(2):78-90.
Periasamy VS, Athinarayanan J, Alshatwi AA. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason Sonochem. 2016 Jul 1;31: 449-55.
Zhang P, Fu C, Hu Y, Dong C, Song Y, Song E. C6-ceramide nanoliposome suppresses tumor metastasis by eliciting PI3K and PKCζ tumor-suppressive activities and regulating integrin affinity modulation. Sci Rep. 2015;5:9275.
Ciner A, Gourdin T, Davidson J, Parette M, Walker SJ, Fox TE, et al. A phase I study of the ceramide nanoliposome in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2023 Jan 1;93(1):23. PMC10796569
Lu W, Zhang G, Zhang R, Flores LG, Huang Q, Gelovani JG, et al. Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res. 2010 Apr 15;70(8):3177-88.
Yu H, Guo C, Feng B, Liu J, Chen X, Wang D, et al. Triple-layered pH-responsive micelleplexes loaded with siRNA and cisplatin prodrug for NF-Kappa B targeted treatment of metastatic breast cancer. Theranostics. 2016;6(1):14. PMC4679351
Huang RF, Wei YJ, Inbaraj BS, Chen BH. Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene. Int J Nanomedicine. 2015 Apr 8;10:2823. PMC4399598
Lynch KL, Ahnen DJ, Byers T, Weiss DG, Lieberman DA. First-degree relatives of patients with advanced colorectal adenomas have an increased prevalence of colorectal cancer. Clin Gastroenterol Hepatol. 2003;1:96-102.
Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006 Feb;7(2):131-42.
Mein JR, Lian F, Wang XD. Biological activity of lycopene metabolites: Implications for cancer prevention. Nutr Rev. 2008 Dec;66(12):667. PMC6824483
Chen YJ, Inbaraj BS, Pu YS, Chen BH. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability. Nanotechnology. 2014 Apr 18;25(15):55.
Hu CM, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012 Apr 15;83(8):1104-11.
Ganta S, Amiji M. Coadministration of Paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm. 2009 Jun 1;6(3):928-39.
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011 Mar;61(2):69-90.
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001 Nov 1;414(6859):105-11.
Konrad CV, Murali R, Varghese BA, Nair R. The role of cancer stem cells in tumor heterogeneity and resistance to therapy. Can J Physiol Pharmacol. 2017 Jan 1;95(1):1-15.
Ahmad G, El Sadda R, Botchkina G, Ojima I, Egan J, Amiji M. Nanoemulsion formulation of a novel taxoid DHA-SBT-1214 inhibits prostate cancer stem cell-induced tumor growth. Cancer Lett. 2017 Oct 10;406:71-80.
Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18708-13.
Leu JG, Chen SA, Chen HM, Wu WM, Hung CF, Yao Y, et al. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine. 2012 Jul;8(5):767-75.
Zhao C, Feng Q, Dou Z, Yuan W, Sui C, Zhang X, et al. Local targeted therapy of liver metastasis from colon cancer by galactosylated liposome encapsulated with doxorubicin. PLoS One. 2013;8(9):e73860.
Postma TJ, Hoekman K, Van Riel JM, Heimans JJ, Vermorken JB. Peripheral neuropathy due to biweekly paclitaxel, epirubicin and cisplatin in patients with advanced ovarian cancer. J Neurooncol. 1999;45(3):241-6. doi: 10.1023/A:1006343818656
Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev. 1999;99(9):2467-98.
Ganta S, Singh A, Kulkarni P, Keeler AW, Piroyan A, Sawant RR, et al. EGFR targeted theranostic nanoemulsion for image-guided ovarian cancer therapy. Pharm Res. 2015 Mar 4;32(8):2753-63. PMC4490117
Zheng N, Gao Y, Ji H, Wu L, Qi X, Liu X, et al. Vitamin E derivative-based multifunctional nanoemulsions for overcoming multidrug resistance in cancer. J Drug Target. 2016 Aug 8;24(7):663-9.
Han X, Du F, Jiang L, Zhu Y, Chen Z, Liu Y, et al. A2780 human ovarian cancer cells with acquired paclitaxel resistance display cancer stem cell properties. Oncol Lett. 2013;6(5):1295. PMC3813719
Ganta S, Singh A, Rawal Y, Cacaccio J, Patel NR, Kulkarni P, et al. Formulation development of a novel targeted theranostic nanoemulsion of docetaxel to overcome multidrug resistance in ovarian cancer. Drug Deliv. 2014 Mar 23;23(3):968. PMC4380874
Meng L, Xia X, Yang Y, Ye J, Dong W, Ma P, et al. Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition. Int J Pharm. 2016 Nov 20;513(1-2):8-16.
Crown J, O’Leary M, Ooi WS. Docetaxel and paclitaxel in the treatment of breast cancer: A review of clinical experience. Oncologist. 2004 Jun 2;9 Suppl 2(S2):24-32.
Tang J, Fu Q, Wang Y, Racette K, Wang D, Liu F. Vitamin E reverses multidrug resistance in vitro and in vivo. Cancer Lett. 2013 Aug 9;336(1):149-57.
Kim JE, Park YJ. Improved antitumor efficacy of hyaluronic acid-complexed paclitaxel nanoemulsions in treating non-small cell lung cancer. Biomol Ther (Seoul). 2017;25(4):411. PMC5499620
Wu H, Liu L, Song L, Ma M, Gu N, Zhang Y. Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species. ACS Nano. 2019 Dec 24;13(12):14013-23.
Patel NR, Piroyan A, Nack AH, Galati CA, McHugh M, Orosz S, et al. Design, synthesis, and characterization of folate-targeted platinum-loaded theranostic nanoemulsions for therapy and imaging of ovarian cancer. Mol Pharm. 2016 Jun 6;13(6):1996-2009.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Indranil Banerjee

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.