IMPACT OF ANTI-HYPERTENSIVE AGENT ON ANTI-DIABETIC DRUG IN DIABETIC AND NON-DIABETIC RATS – ASSESSMENT OF DRUG–DRUG INTERACTIONS
DOI:
https://doi.org/10.22159/ajpcr.2025v18i3.53818Keywords:
Captopril, Metformin, Drug interactions, Pharmacokinetic and pharmacodynamic interactionAbstract
Objectives: The investigation was planned to evaluate pharmacokinetic and pharmacodynamic drug communication of Captopril and Metformin in healthy and diabetic albino Wistar rats succeeding single and many dosage treatments.
Methods: Therapeutic doses of captopril and metformin were administered to animal models, blood glucose levels were assessed by glucose oxidase-peroxidase (GOD-POD) method technique, and plasma captopril and metformin amounts were estimated by reversed-phase high-performance liquid chromatography (HPLC) technique to compute the pharmacokinetic attributes. In the present work, the pharmacokinetic and pharmacodynamic interaction between captopril and metformin was evaluated. Pre-clinical investigation might be supportive of evading drug–drug interactions in medical conditions. By means of HPLC, concentration versus time data were plotted for direct extraction of the pharmacokinetic attributes, peak plasma concentrations (Cmax), and time to reach peak concentration (tmax). The linear trapezoidal rule was used in this work to compute AUC from 0 h to 24 h, which is denoted by AUC 0-t.
Results: In the determination of fasting serum glucose concentration in normal and streptozotocin-inducted diabetic animals on day 1 and day 8, there was a tremendous decline in the glucose levels in a significant manner (**p<0.001). When captopril alone administered group was compared to the group in combination with metformin on days 1 and 8, there was no significant variance in Cmax, Tmax, AUCo-t, and AUCo-inf.
Conclusion: The results concluded from the kinetic analysis revealed that there were no significant interactions in the kinetic parameters of metformin and captopril, both alone and in combination. However, further possible investigations are needed which might be helpful for diabetes.
Downloads
References
Karalliedde J, Gnudi L. Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease. Nephrol Dial Transplant. 2016;31(2):206-13. doi: 10.1093/ndt/gfu405, PMID: 25550448
Adeloye D, Ige JO, Aderemi AV, Adeleye N, Amoo EO, Auta A, et al. Estimating the prevalence, hospitalisation and mortality from type 2 diabetes mellitus in Nigeria: A systematic review and meta-analysis. BMJ Open. 2017;7(5):e015424. doi: 10.1136/bmjopen-2016-015424, PMID: 28495817
Enhörning S, Melander O. The vasopressin system in the risk of diabetes and cardiorenal disease, and hydration as a potential lifestyle intervention. Ann Nutr Metab. 2018;72(Suppl 2):21-7. doi: 10.1159/000488304, PMID: 29925066
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. doi: 10.1016/j.diabres.2019.107843, PMID: 31518657
Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J. 2016 Sep;24(5):547-53. doi: 10.1016/j. jsps.2015.03.013, PMID: 27752226, PMCID: PMC5059829
Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition. 2002;18(10):872-9. doi: 10.1016/s0899-9007(02)00916-4, PMID: 12361782
Khan MA, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes-global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107-11. doi: 10.2991/ jegh.k.191028.001, PMID: 32175717
Agofure O, Odjimogho S, Okandeji-Barry OR, Efegbere HA, Nathan HT. Pattern of diabetes mellitus-related complications and mortality rate: Implications for diabetes care in a low-resource setting. Sahel Med J. 2020;23(4):206-10. doi: 10.4103/smj.smj_64_19
Richens A. Pharmacokinetic and pharmacodynamic drug interactions during treatment with vigabatrin. Acta Neurol Scand Suppl. 1995;162:43- 6. doi: 10.1111/j.1600-0404.1995.tb00500.x, PMID: 7495190
Sun L, Mi K, Hou Y, Hui T, Zhang L, Tao Y, et al. Pharmacokinetic and pharmacodynamic drug-drug interactions: Research methods and applications. Metabolites. 2023 Jul 29;13(8):897. doi: 10.3390/ metabo13080897, PMID: 37623842, PMCID: PMC10456269
Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015 Oct 10;6(13):1246-58. doi: 10.4239/wjd.v6.i13.1246, PMID: 26468341, PMCID: PMC4600176
Ferrari R. RAAS inhibition and mortality in hypertension. Glob Cardiol Sci Pract. 2013 Nov 1;2013(3):269-78. doi: 10.5339/gcsp.2013.34, PMID: 24689028, PMCID: PMC3963752.
Cordonnier DJ, Zaoui P, Halimi S. Role of ACE inhibitors in patients with diabetes mellitus. Drugs. 2001;61(13):1883-92. doi: 10.2165/00003495-200161130-00001, PMID: 11708761
Hypertension in diabetes Study IV. Therapeutic requirements to maintain tight blood pressure control. Diabetologia. 1996 Dec;39(12):1554- 61. doi: 10.1007/s001250050614. Erratum in: Diabetologia. 1997 Mar;40(3):366. PMID: 8960842
Ghasemi A, Jeddi S. Streptozotocin as a tool for induction of rat models of diabetes: A practical guide. Excli J. 2023 Feb 21;22:274-94. doi: 10.17179/excli2022-5720, PMID: 36998708, PMCID: PMC10043433
Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother. 2010 Jul;1(2):87-93. doi: 10.4103/0976-500X.72350. Erratum in: J Pharmacol Pharmacother. 2017 Jul-Sep;8(3):153. doi: 10.4103/0976- 500X.215702, PMID: 29081629, PMCID: PMC3043327
Lindstrom NM, Moore DM, Zimmerman K, Smith SA. Hematologic assessment in pet rats, mice, hamsters, and gerbils: Blood sample collection and blood cell identification. Clin Lab Med. 2015 Sep;35(3):629-40. doi: 10.1016/j.cll.2015.05.011, PMID: 26297409
Govindarajan R, Tejas V, Pushpangadan P. High-performance liquid chromatography (HPLC) as a tool for standardization of complex herbal drugs. J AOAC Int. 2019 Jul 1;102(4):986-92. doi: 10.5740/ jaoacint.18-0378, PMID: 30558698
Shailajan S, Patil Y, Joshi M, Menon S, Mhatre M. Simultaneous quantification of pharmacological markers quercetin and berberine using high-performance thin-layer chromatography (HPTLC) and high-performance liquid chromatography (HPLC) from a polyherbal formulation Pushyanuga churna. J AOAC Int. 2019 Jul 1;102(4):1003-13. doi: 10.5740/jaoacint.18-0380, PMID: 30563588
Kesarwani K, Gupta R, Mukerjee A. Bioavailability enhancers of herbal origin: An overview. Asian Pac J Trop Biomed. 2013 Apr;3(4):253- 66. doi: 10.1016/S2221-1691(13)60060-X, PMID: 23620848, PMCID: PMC3634921
Czigle S, Nagy M, Mladěnka P, Tóth J, OEMONOM. Pharmacokinetic and pharmacodynamic herb-drug interactions-part I. Herbal medicines of the central nervous system. PeerJ. 2023 Nov 15;11:e16149. doi: 10.7717/peerj.16149, PMID: 38025741, PMCID: PMC10656908
Simon Lati M, Gitonga David N, Njoki Kinuthia R. Clinical significance of potential drug-drug interactions and their targets for minimization among hypertensive diabetic outpatients at a Kenyan Referral Hospital. Int J Pharm Pharm Sci. 2020;12(10):6-11.
De Boer IH, Bangalore S, Benetos A, Davis AM, Michos ED, Muntner P, et al. Diabetes and hypertension: A position statement by the American Diabetes Association. Diabetes Care. 2017;40(9):1273-84. doi: 10.2337/dci17-0026, PMID: 28830958
Mitra SK, Sundaram R, Venkataranganna MV, Gopumadhavan S. Pharmacokinetic interaction of Diabecon (D-400) with rifampicin and nifedipine. Eur J Drug Metab Pharmacokinet. 1999;24(1):79-82. doi: 10.1007/BF03190014, PMID: 10412895
Hayward RA, Reaven PD, Wiitala WL, Bahn GD, Reda DJ, Ge L, et al. Investigators Follow-up of glycaemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;372(23):2197-206. doi: 10.1056/NEJMoa1414266, PMID: 26039600
Erdmann E. Microalbuminuria as a marker of cardiovascular risk in patients with type 2 diabetes. Int J Cardiol. 2006 Feb 15;107(2):147-53. doi: 10.1016/j.ijcard.2005.03.053, PMID: 15975669
Triplitt C. Drug interactions of medications commonly used in diabetes. Diabetes Spectr. 2006 Oct 1;19(4):202-11. doi: 10.2337/ diaspect.19.4.202
Manikandan R, Sri Sai Sudha N, Logaraj M. Assessment of medication adherence among patients with hypertension and diabetes mellitus in urban field practice. Asian J Pharm Clin Res. 2018;11(4):130-2. doi: 10.22159/ajpcr.2018.v11i4.23236
Scheen AJ. Drug interactions of clinical importance with anti-hyperglycaemic agents: An update. Drug Saf. 2005 Jul;28(7):601-31. doi: 10.2165/00002018-200528070-00004
Published
How to Cite
Issue
Section
Copyright (c) 2025 Rajesham venkata, ANAND ARUMUGAM

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.