ANTIBACTERIAL EFFECT OF EPSILON-POLYLYSINE (Ε-PL) AGAINST ENTEROCOCCUS FAECALIS DURING ENDODONTIC IRRIGATION: AN IN-SILICO

Authors

DOI:

https://doi.org/10.22159/ajpcr.2025v18i4.53828

Keywords:

Enterococcus faecalis, Epsilon-polylysine, Endodontic irrigation

Abstract

Epsilon‐polylysine (ε‐Pl) is a naturally occurring cationic homopolymer composed of 25–35 L‐lysine residues, whose unique bonding through ε‐amino and carboxyl groups endows it with a high density of positive charges. This intrinsic property underpins its broad-spectrum antimicrobial activity, making it a promising candidate for endodontic applications aimed at eradicating persistent pathogens such as Enterococcus faecalis. Computational studies employing the 6bsq receptor a model featuring an anionic and polar binding pocket analogous to bacterial membranes emonstrate that ε‐Pl engages in multiple non-covalent interactions, including strong hydrogen bonds, ionic attractions, and van der Waals contacts. Molecular docking revealed a moderate binding free energy (~–4.55 kcal/mol), while molecular dynamics simulations confirmed the stability of the ε‐Pl–receptor complex with low root-mean-square deviation values (~1.41 Å). These findings suggest that ε‐Pl can effectively bind to and destabilize negatively charged bacterial cell membranes through a “carpet‐like” mechanism, ultimately leading to cell lysis. In the context of endodontics, the resilient biofilms and robust cell envelopes of E. faecalis present significant treatment challenges. ε‐Pl ability to disrupt these structures supports its potential use as an irrigant or intracanal medicament to eliminate E. faecalis and improve root canal treatment outcomes. In addition, ε‐Pl exhibits favorable absorption, distribution, metabolism, and excretion ADME properties and a well-established safety profile, further underscoring its suitability for clinical applications. This integrated approach, combining theoretical modeling with experimental insights, provides a robust framework for the development of ε‐Pl-based strategies aimed at resolving persistent endodontic infections.

Downloads

Download data is not yet available.

References

Nair PN. On the causes of persistent apical periodontitis: A review. Int Endod J. 2006 Apr;39(4):249-81.

Tibúrcio-Machado CS, Michelon C, Zanatta FB, Gomes MS, Marin JA, Bier CA. The global prevalence of apical periodontitis: A systematic review and meta-analysis. Int Endod J. 2021 Jan 22;54(5):712-35.

Graunaite I, Lodiene G, Maciulskiene V. Pathogenesis of apical periodontitis: A literature review. J Oral Maxillofac Res. 2011 Sep 3;2(4):e1.

Limantoro B, Iqbal M, Fatwa Imanu S, Wahjuningrum D, Wulan K, Natanael J, et al. Evaluating SWEEPS as Alternative method for endodontic filling material removal procedure during retreatment: systematic review. J Int Dent Med Res. 2024;17(4):1747-53.

Nair PN. Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit Rev Oral Biol Med. 2004 Nov;15(6):348-81.

Deng Z, Lin B, Liu F, Zhao W. Role of Enterococcus faecalis in refractory apical periodontitis: From pathogenicity to host cell response. J Oral Microbiol. 2023 Mar 1;15(1):2184924.

Ranjbar HH, Hosseini-Abari A, Ghasemi SM, Birgani ZH. Antibacterial activity of epsilon-poly-l-lysine produced by Stenotrophomonas maltophilia HS4 and Paenibacillus polymyxa HS5, alone and in combination with bacteriophages. Microbiology (Reading). 2023 Jul 21;169(7):001363.

Xu Y, Hao Y, Arif M, Xing X, Deng X, Wang D, et al. Poly(Lysine)- derived carbon quantum dots conquer Enterococcus faecalis biofilm-induced persistent endodontic infections. Int J Nanomedicine. 2024 Jun 1;19:5879-93.

PubChem. PubChem Compound Summary for CID 58592376, (2S)- 2-Amino-N-Methylheptanamide. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/2s_-2- amino-n-methylheptanamide [Last accessed on 2025 Feb 25].

Data P. RCSB PDB - 6BSQ: Enterococcus faecalis Penicillin Binding Protein 4 (PBP4); 2017. Available from: https://www.rcsb.org/ structure/6BSQ [Last accessed on 2025 Feb 25].

Raybould MI, Marks C, Krawczyk K, Taddese B, Nowak J, Lewis AP, et al. Five computational developability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci U S A. 2019 Mar 05;116(10):4025-30.

Fu L, Shi S, Yi J, Wang N, He Y, Wu Z, et al. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024 Apr 4;52:W422-31.

Baassi M, Moussaoui M, Soufi H, Rajkhowa S, Sharma A, Sinha S, et al. Towards designing of a potential new HIV-1 protease inhibitor using QSAR study in combination with Molecular docking and Molecular dynamics simulations. PLoS One. 2023 Apr 20;18(4):e0284539-9.

Kemmish H, Fasnacht M, Yan L. Fully automated antibody structure prediction using BIOVIA tools: Validation study. PLoS One. 2017 May 18;12(5):e0177923.

Kian M, Hosseini E, Abdizadeh T, Langaee T, Khajouei A, Ghasemi S. Molecular docking and mouse modeling suggest CMKLR1 and INSR as targets for improving PCOS phenotypes by minocycline. EXCLI J. 2022 Feb 16;21:400-14.

Roskoski R. Rule of five violations among the FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. 2023 May 1;191:106774.

Rim KT Jr. In silico prediction of toxicity and its applications for chemicals at work. Toxicol Environ Health Sci. 2020 May 14;12(3):191-202.

Cronin MT, Enoch SJ, Mellor CL, Przybylak KR, Richarz AN, Madden JC. In silico prediction of organ level toxicity: Linking chemistry to adverse effects. Toxicol Res. 2017 Jul 15;33(3):173-82.

Pizzo F, Gadaleta D, Benfenati E. In silico models for repeated-dose toxicity (RDT): Prediction of the no observed adverse effect level (NOAEL) and lowest observed adverse effect level (LOAEL) for drugs. Methods Mol Biol. 2022;241-58.

Zarn JA, Engeli BE, Schlatter JR. Study parameters influencing NOAEL and LOAEL in toxicity feeding studies for pesticides: Exposure duration versus dose decrement, dose spacing, group size and chemical class. Regul Toxicol Pharmacol. 2011 Nov;61(2):243-50.

Tan LH, Kwoh CK, Mu Y. RmsdXNA: RMSD prediction of nucleic acid-ligand docking poses using machine-learning method. Brief Bioinform. 2024 Mar 27;25(3):bbae166.

Cabral MB, Dela Cruz CJ, Sato Y, Oyong G, Rempillo O, Galvez MC, et al. In silico approach in the evaluation of pro-inflammatory potential of polycyclic aromatic hydrocarbons and volatile organic compounds through binding affinity to the human toll-like receptor 4. Int J Environ Res Public Health. 2022 Aug;19(14):8360.

Gül N, Yıldız A. An in silico study of how histone tail conformation affects the binding affinity of ING family proteins. PeerJ. 2022;10:e14029.

Yuan C, Hao X. Antibacterial mechanism of action and in silico molecular docking studies of Cupressus funebris essential oil against drug resistant bacterial strains. Heliyon. 2023 Aug 1;9(8):e18742.

Sakhawat A, Khan MU, Rehman R, Khan S, Shan MA, Batool A, et al. Natural compound targeting BDNF V66M variant: Insights from in silico docking and molecular analysis. AMB Express. 2023 Nov 28;13(1):134.

Moon TM, D’Andréa ÉD, Lee CW, Soares A, Jakoncic J, Desbonnet C, et al. The structures of penicillin-binding protein 4 (PBP4) and PBP5 from Enterococci provide structural insights into β-lactam resistance. J Biol Chem. 2018 Oct 24;293(48):18574-84.

Ushimaru K, Hamano Y, Morita T, Fukuoka T. Moldable material from ε-Poly-l-lysine and lignosulfonate: Mechanical and self-healing properties of a bio-based polyelectrolyte complex. ACS Omega. 2019 Jun 4;4(6):9756-62.

Wakamoto H, Matsuda H, Kawamoto K, Makino S. Epsilon-polylysine microparticle adjuvant drives cytokine production to Th1 profile. J Vet Med Sci. 2007 Jan 1;69(7):717-23.

Ye R, Xu H, Wan C, Peng S, Wang L, Xu H, et al. Antibacterial activity and mechanism of action of ε-poly-l-lysine. Biochem Biophys Res Commun. 2013 Sep;439(1):148-53.

Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: Functions and clinical potential. Nat Rev Drug Discov. 2020 Feb 27;19(5):311-32.

Liu SR, Wu QP, Zhang JM, Mo SP. Efficient production of ε Poly- L-Lysine by Streptomyces ahygroscopicus using one-stage pH control fed-batch fermentation coupled with nutrient feeding. J Microbiol Biotechnol. 2015 Mar 24;25(3):358-65.

Chen XS, Ren XD, Dong N, Li S, Li F, Zhao FL, et al. Culture medium containing glucose and glycerol as a mixed carbon source improves ε-poly-l-lysine production by Streptomyces sp. M-Z18. Bioprocess Biosyst Eng. 2011 Sep 9;35(3):469-75.

Xu D, Yao H, Cao C, Xu Z, Li S, Xu Z, et al. Enhancement of ε-poly-l-lysine production by overexpressing the ammonium transporter gene in Streptomyces albulus PD-1. Bioprocess and Biosys Eng. 2018 Jul 5;41(9):1337-45.

Yamanaka K, Maruyama C, Takagi H, Hamano Y. Epsilon-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nat Chem Biol. 2008 Dec 1;4(12):766-72.

Hamano Y, Kito N, Kita A, Imokawa Y, Yamanaka K, Maruyama C, et al. ε-Poly- l -Lysine peptide chain length regulated by the linkers connecting the transmembrane domains of ε-Poly- l -lysine synthetase. Appl Environ Microbiol. 2014 Jun 7;80(16):4993-5000.

Hamano Y, Nicchu I, Shimizu T, Onji Y, Hiraki J, Takagi H. ɛ-Poly-l-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase. Appl Microbiol Biotechnol. 2007 Jul 5;76(4):873-82. 37. Nishikawa M, Ogawa K. Distribution of microbes producing antimicrobial epsilon-poly-L-lysine polymers in soil microflora determined by a novel method. Appl Environ Microbiol. 2002 Jul 1;68(7):3575-81.

Shima S, Sakai H. Polylysine produced by Streptomyces. Agric Biol Chem. 1977 Jan 1;41(9):1807-9.

Hiraki J, Ichikawa T, Ninomiya S, Seki H, Uohama K, Seki H, et al. Use of ADME studies to confirm the safety of epsilon-polylysine as a preservative in food. Regul Toxicol Pharmacol RTP. 2003 Apr 1;37(2):328-40.

Hamano Y, Yoshida T, Kito M, Nakamori S, Nagasawa T, Takagi H. Biological function of the pld gene product that degrades -poly-l-lysine in Streptomyces albulus. Appl Microbiol Biotechnol. 2006 Mar 27;72(1):173-81.

Yamanaka K, Kito N, Imokawa Y, Maruyama C, Utagawa T, Hamano Y. Mechanism of ε-Poly- l -lysine production and accumulation revealed by identification and analysis of an ε-Poly- l -lysine-degrading enzyme. Appl Environ Microbiol. 2010 Jul 3;76(17):5669-75.

Liu F, Liu M, Du L, Wang D, Geng Z, Zhang M, et al. Synergistic antibacterial effect of the combination of ɛ-Polylysine and Nisin against Enterococcus faecalis. J Food Protect. 2015 Dec 1;78(12):2200-6.

Niaz F, Faheem M, Khattak M, Khawaja IA, Ahn MJ, Sarker U, et al. Antibacterial and antibiofilm activity of juglone derivatives against Enterococcus faecalis: An in silico and in vitro. BioMed Res Int. 2022 Nov 10;2022:1-11.

Das S, Kumar HSV, Pal SK, Srivastava VK, Jyoti A, Kumar S, et al. Prospecting potential inhibitors of sortase A from Enterococcus faecalis: A multidrug resistant bacteria, through in-silico and in-vitro approaches. Protein Peptide Lett. 2020 Aug 13;27(7):582-92.

Published

07-04-2025

How to Cite

BRIAN LIMANTORO. “ANTIBACTERIAL EFFECT OF EPSILON-POLYLYSINE (Ε-PL) AGAINST ENTEROCOCCUS FAECALIS DURING ENDODONTIC IRRIGATION: AN IN-SILICO”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 4, Apr. 2025, pp. 95-101, doi:10.22159/ajpcr.2025v18i4.53828.

Issue

Section

Review Article(s)