BIOACTIVE SECONDARY METABOLITES DERIVED FROM ENDOPHYTES: A REVIEW

Authors

  • SHOBHA SINGARAPALLE Department of Pharmaceutical Chemistry, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India. https://orcid.org/0000-0002-5466-1264
  • M. ABDULLAH HARH Department of Pharmacognosy, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India. https://orcid.org/0009-0006-6337-8088
  • CHEEPURI GOWTHAM PHANINDRA Department of Pharmacognosy, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India. https://orcid.org/0009-0003-0178-9808
  • D. JAGADEESWARA REDDY Department of Pharmaceutical Biotechnology, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India https://orcid.org/0009-0005-7672-3568
  • PATRICK FRANCIS KIMARIYO Dar es Salaam Institute of Technology, Science and Laboratory Technology Department, Dar es Salaam, Tanzania
  • MURALI KRISHNA KUMAR MUTHYALA Department of Pharmaceutical Chemistry, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i5.53898

Keywords:

Endophytes, secondary metabolites, bioactive compounds, plant-microbe interactions, biopharmaceuticals, sustainable agriculture, biotechnology.

Abstract

Endophytes comprise diverse bacteria, fungi, and actinomycetes that reside harmlessly within plant tissues, fostering complex ecological interactions that significantly enhance plant growth, stress resilience, and disease resistance. Since their discovery in the early 19th century, endophytes have become essential for sustainable agriculture, environmental conservation, and advances in therapy. They generate bioactive secondary metabolites such as paclitaxel (Taxol), camptothecin, podophyllotoxin, and vincristine, critically important in cancer treatment. The varied biosynthetic pathways for metabolites like terpenoids, polyketides, alkaloids, flavonoids, and phenylpropanoids emphasize the biochemical versatility of endophytes. Leveraging these bacteria biotechnologically offers a sustainable and scalable alternative to conventional plant-based extraction, addressing the growing global demand for medicinal compounds while minimizing ecological impact. This review presents a detailed analysis of endophytes' classification, ecological roles, and industrial applications, highlighting their significant contributions to advanced pharmaceutical research, sustainable agriculture, and bioremediation. Expanding research on plant-endophyte relationships may result in discovering new bioactive compounds, advancing the convergence of microbiology, biotechnology, and environmental science.

Downloads

Download data is not yet available.

References

Bhunjun CS, Phukhamsakda C, Hyde KD, McKenzie EH, Saxena RK, Li Q. Do all fungi have ancestors with endophytic lifestyles? Fungal Divers. 2023;125(1):73-98. doi: 10.1007/s13225-023-00516-5

Singh N, Sharma V, Kalita RD. Interaction between plants and endophytes: Evolutionary significance and its role in plants development. In: Plant Endophytes and Secondary Metabolites. Netherlands: Elsevier; 2024. p. 295-312. doi: 10.1016/B978-0-443- 13365-7.00007-5

Rabbee MF, Ali MS, Islam MN, Rahman MM, Hasan MM, Baek KH. Endophyte mediated biocontrol mechanisms of phytopathogens in agriculture. Res Microbiol. 2024;175(8):104229. doi: 10.1016/j. resmic.2024.104229. PMID 38992820

Muthu Narayanan M, Ahmad N, Shivanand P, Metali F. The role of endophytes in combating fungal- and bacterial-induced stress in plants. Molecules. 2022;27(19):6549. doi: 10.3390/molecules27196549, PMID 36235086

Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79(3):293-320. doi: 10.1128/MMBR.00050-14, PMID 26136581

Potshangbam M, Devi SI, Sahoo D, Strobel GA. Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microbiol. 2017;8:325. doi: 10.3389/fmicb.2017.00325, PMID 28303127

Singh R, Dubey AK. Endophytic Actinomycetes as emerging source for therapeutic compounds. Indo Glob J Pharm Sci. 2015;5(2):106-16. doi: 10.35652/IGJPS.2015.11

Bard NW, Cronk QC, Davies TJ. Fungal endophytes can modulate plant invasion. Biol Rev Camb Philos Soc. 2024;99(5):1652-71. doi: 10.1111/brv.13085, PMID 38629189

Liu S, Hou Y, Zheng K, Ma Q, Wen M, Shao S, et al. Exploring the diversity, bioactivity of endophytes, and metabolome in Synsepalum dulcificum. Front Microbiol. 2024;15:1258208. doi: 10.3389/ fmicb.2024.1258208, PMID 38476934

Kharkwal AC, Joshi H, Shandilya C, Dabral S, Kumar N, Varma A. Isolation and characterization of a newly discovered plant growth-promoting endophytic fungal strain from the genus Talaromyces. Sci Rep. 2024;14(1):6022. doi: 10.1038/s41598-024-54687-5, PMID 38472228

Gouda S, Das G, Sen SK, Shin HS, Patra JK. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front Microbiol. 2016;7:1538. doi: 10.3389/fmicb.2016.01538, PMID 27746767

Das S, Das M, Nath R, Nath D, Patra JK, Talukdar AD. Fungal metabolites and their importance in pharmaceutical industry. In: Entrepreneurship with microorganisms. Netherlands: Elsevier; 2024. p. 89-120. doi: 10.1016/B978-0-443-19049-0.00021-9

Prakash V, Rana S, Sagar A. Taxomyces andreanae: A source of anticancer drug. Int J Bot Stud. 2016;1:43-6.

Liang Z, Zhang J, Zhang X, Li J, Zhang X, Zhao C. Endophytic fungus from Sinopodophyllum emodi (Wall.) ying that produces podophyllotoxin. J Chromatogr Sci. 2016;54(2):175-8. doi: 10.1093/ chromsci/bmv124, PMID 26306574

Alam M, Pandit B, Moin A, Iqbal UN. Invisible inhabitants of plants and a sustainable planet: Diversity of bacterial endophytes and their potential in sustainable agriculture. Indian J Microbiol. 2024;5:1-24.

Vincze ÉB, Becze A, Laslo É, Mara G. Beneficial soil microbiomes and their potential role in plant growth and soil fertility. Agriculture. 2024;14(1):1-23. doi: 10.3390/agriculture14010152

Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CM, et al. Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Front Microbiol. 2017;8:2552. doi: 10.3389/ fmicb.2017.02552, PMID 29312235

Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. Front Plant Sci. 2024;15:1349401. doi: 10.3389/ fpls.2024.1349401, PMID 38571718

Retnowati Y, Kandowangko NY, Katili AS, Pembengo W. Diversity of actinomycetes on plant rhizosphere of karst ecosystem of Gorontalo, Indonesia. Biodiversitas. 2024;25(3):907-15. doi: 10.13057/biodiv/d250301

Tiwari P, Bose SK, Park KI, Dufossé L, Fouillaud M. Plant-microbe interactions under the extreme habitats and their potential applications. Microorganisms. 2024;12(3):448. doi: 10.3390/ microorganisms12030448, PMID 38543499

Wannawong T, Mhuantong W, Macharoen P, Niemhom N, Sitdhipol J, Chaiyawan N, et al. Comparative genomics reveals insight into the phylogeny and habitat adaptation of novel Amycolatopsis species, an endophytic Actinomycete associated with scab lesions on potato tubers. Front Plant Sci. 2024;15:1346574. doi: 10.3389/fpls.2024.1346574, PMID 38601305

Verma VC, Gange AC. Advances in Endophytic Research. Berlin: Springer; 2014. p. 1-454.

Diwthe PC, Sawarkar DA, Umap DS, Somkuwar DA. Endophytes and their therapeutic application. Int J Adv Biochem Res. 2024;8(1):399- 410. doi: 10.33545/26174693.2024.v8.i1f.434

Abdel-Razek AS, El-Naggar ME, Allam A, Morsy OM, Othman SI. Microbial natural products in drug discovery. Processes. 2020;8(4):470. doi: 10.3390/pr8040470

Dastogeer KM, Tumpa FH, Sultana A, Akter MA, Chakraborty A. Plant microbiome-an account of the factors that shape community composition and diversity. Curr Plant Biol. 2020;23:100161. doi: 10.1016/j.cpb.2020.100161

Clay K, Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat. 2002;160 Suppl4:S99-S127. doi: 10.1086/342161, PMID 18707456

Qin S, Xing K, Jiang JH, Xu LH, Li WJ. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic Actinobacteria. Appl Microbiol Biotechnol. 2011;89(3):457-73. doi: 10.1007/s00253-010-2923-6, PMID 20941490

Dutta P, Mahanta M, Singh SB, Thakuria D, Deb L, Kumari A, et al. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. Front Plant Sci. 2023;14:1145715. doi: 10.3389/fpls.2023.1145715, PMID 37255560

Matsumura E, Morinaga K, Fukuda K. Host Specificity and seasonal variation in the colonization of Tubakia sensu lato associated with evergreen Oak Species in Eastern Japan. Microb Ecol. 2023;86(1):240- 52. doi: 10.1007/s00248-022-02067-9, PMID 35857039

Asad S, Priyashantha AK, Tibpromma S, Luo Y, Zhang J, Fan Z, et al. Coffee-associated endophytes: Plant growth promotion and crop protection. Biology (Basel). 2023;12(7):911. doi: 10.3390/ biology12070911, PMID 37508343

Glazer AN, Nikaido H. Developments in Applied Microbiology and Biotechnology. Cambridge: Cambridge University Press; 2007. p. 45- 67.

Bala K, Ghosh T, Kumar V, Sangwan P. Harnessing Microbial Potential for Multifarious Applications. Cham: Springer Nature; 2024. p. 299- 315.

Marinković J, Nikolić B, Marković T, Petrović B, Pašalić S, Lal M, et al. Essential oils as adjuvants in endodontic therapy: Myth or reality? Future Microbiol. 2022;17:1487-99. doi: 10.2217/fmb-2022-0115, PMID 36321479

Maheshwari DK, Maheshwari R, Rinaudo. Endophytes: Biology and Biotechnology. New York: Springer; 2017. p. 120-30.

Debnath S, Chakraborty S, Langthasa M, Choure K, Agnihotri V, Srivastava A, et al. Non-rhizobial nodule endophytes improve nodulation, change root exudation pattern and promote the growth of lentil for prospective application in fallow soil. Front Plant Sci. 2023;14:1152875. doi: 10.3389/fpls.2023.1152875, PMID 37113600

Patel HK, Makampara RA, Kalaria RK, Joshi MP. Endophytes: A novel tool for sustainable agriculture. In: Endophytic Association: What, Why and How. Netherlands: Elsevier; 2023. p. 37-55. doi: 10.1016/B978-0- 323-91245-7.00023-7

Rani S, Kumar P, Dahiya P, Maheshwari R, Dang AS, Suneja P. Endophytism: A multidimensional approach to plant-prokaryotic microbe interaction. Front Microbiol. 2022;13:861235. doi: 10.3389/ fmicb.2022.861235, PMID 35633681

Anand U, Pal T, Yadav N, Singh VK, Tripathi V, Choudhary KK, et al. Current scenario and future prospects of endophytic microbes: promising candidates for abiotic and biotic stress management for agricultural and environmental sustainability. Plant-Microbe Interact. 2023;8:1455-86.

Afzal I, Shinwari ZK, Sikandar S, Shahzad S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res. 2019;221:36-49. doi: 10.1016/j.micres.2019.02.001, PMID 30825940

De Mandal S, Jeon J. Phyllosphere Microbiome in plant health and disease. Plants (Basel). 2023;12(19):3481. doi: 10.3390/ plants12193481, PMID 37836221

Nair DN, Padmavathy S. Impact of endophytic microorganisms on plants, environment and humans. ScientificWorldJournal. 2014;2014:250693. doi: 10.1155/2014/250693, PMID 24587715

Jacob J, Krishnan GV, Thankappan D, Amma BN. Endophytic Bacterial Strains Induced Systemic Resistance in Agriculturally Important Crop Plants. Netherlands: Elsevier Incorporated; 2020. p. 75-105.

Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant-microbiome interactions: From community assembly to plant health. Nat Rev Microbiol. 2020;18(11):607-21. doi: 10.1038/s41579-020-0412-1, PMID 32788714

Verma SK, Sahu PK, Kumar K, Pal G, Gond SK, Kharwar RN, et al. Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. J Appl Microbiol. 2021;131(5):2161-77. doi: 10.1111/jam.15111, PMID 33893707

Zhuang Y, Wang H, Tan F, Wu B, Liu L, Qin H, et al. Rhizosphere metabolic cross-talk from plant-soil-microbe tapping into agricultural sustainability: Current advance and perspectives. Plant Physiol Biochem. 2024;210:108619. doi: 10.1016/j.plaphy.2024.108619, PMID 38604013

Ling N, Wang T, Kuzyakov Y. Rhizosphere bacteriome structure and functions. Nat Commun. 2022;13(1):836. doi: 10.1038/s41467-022- 28448-9, PMID 35149704

Mandal M, Das S, Roy A, Rakwal R, Jones OA, Popek R, et al. Interactive relations between plants, the phyllosphere microbial community, and particulate matter pollution. Sci Total Environ. 2023;890:164352. doi: 10.1016/j.scitotenv.2023.164352, PMID 37230354

Sohrabi R, Paasch BC, Liber JA, He SY. Phyllosphere microbiome. Annu Rev Plant Biol. 2023;74:539-68. doi: 10.1146/annurev-arplant-102820-032704, PMID 36854478

Álvarez-Pérez S, Lievens B, de Vega C. Floral nectar and honeydew microbial diversity and their role in biocontrol of insect pests and pollination. Curr Opin Insect Sci. 2024;61:101138. doi: 10.1016/j. cois.2023.101138. PMID 37931689

Cullen NP, Fetters AM, Ashman TL. Integrating microbes into pollination. Curr Opin Insect Sci. 2021;44:48-54. doi: 10.1016/j. cois.2020.11.002, PMID 33248285

Narayanan Z, Glick BR. Secondary metabolites produced by plant growth-promoting bacterial endophytes. Microorganisms. 2022;10(10):2008. doi: 10.3390/microorganisms10102008, PMID 36296283

Ngalimat MS, Mohd Hata E, Zulperi D, Ismail SI, Ismail MR, Mohd Zainudin NA, et al. Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms. 2021;9(4):682. doi: 10.3390/microorganisms9040682, PMID 33810209

Adeleke BS, Babalola OO. Pharmacological potential of fungal endophytes associated with medicinal plants: A review. J Fungi (Basel). 2021;7(2):147. doi: 10.3390/jof7020147, PMID 33671354

Koza NA, Adedayo AA, Babalola OO, Kappo AP. Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms. 2022;10(8):1528. doi: 10.3390/microorganisms10081528, PMID 36013946

Todd JN, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Fungal effectoromics: A world in constant evolution. Int J Mol Sci. 2022;23(21):13433. doi: 10.3390/ijms232113433, PMID 36362218

Dalakouras A, Katsaouni A, Avramidou M, Dadami E, Tsiouri O, Vasileiadis S, et al. A beneficial fungal root endophyte triggers systemic RNA silencing and DNA methylation of a host reporter gene. RNA Biol. 2023;20(1):20-30. doi: 10.1080/15476286.2022.2159158, PMID 36573793

Omomowo OI, Babalola OO. Bacterial and fungal endophytes: Tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms. 2019;7(11):481. doi: 10.3390/microorganisms7110481, PMID 31652843

Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. Endophytes and their potential in biotic stress management and crop production. Front Microbiol. 2022;13:933017. doi: 10.3389/fmicb.2022.933017, PMID 36325026

Massalha H, Korenblum E, Tholl D, Aharoni A. Small molecules below‐ground: The role of specialized metabolites in the rhizosphere. Plant J. 2017;90(4):788-807. doi: 10.1111/tpj.13543, PMID 28333395

Yi HS, Yang JW, Ryu CM. ISR meets SAR outside: Additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci. 2013;4:122. doi: 10.3389/ fpls.2013.00122, PMID 23717313

Wang Y, Mostafa S, Zeng W, Jin B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci. 2021;22(16):8568. doi: 10.3390/ijms22168568, PMID 34445272

Romera FJ, García MJ, Lucena C, Martínez-Medina A, Aparicio MA, Ramos J, et al. Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Front Plant Sci. 2019;10:287. doi: 10.3389/ fpls.2019.00287, PMID 30915094

Fahde S, Boughribil S, Sijilmassi B, Amri A. Rhizobia: A promising source of plant growth-promoting molecules and their non-legume interactions: Examining applications and mechanisms. Agriculture. 2023;13(7):1279. doi: 10.3390/agriculture13071279

Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological aspects. FEMS Microbiol Rev. 2000;24(4):487-506. doi: 10.1111/j.1574-6976.2000.tb00552.x, PMID 10978548

Etesami H, Jeong BR, Glick BR. Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops-A review. Curr Res Biotechnol. 2023;5:100128. doi: 10.1016/j. crbiot.2023.100128

Zheng M, Wang W, Hayes M, Nydell A, Tarr MA, Van Bael SA, et al. Degradation of Macondo 252 oil by endophytic Pseudomonas putida. J Environ Chem Eng. 2018;6(1):643-8. doi: 10.1016/j.jece.2017.12.071

Eid AM, Fouda A, Abdel-Rahman MA, Salem SS, Elsaied A, Oelmüller R, et al. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: An overview. Plants (Basel). 2021;10(5):935. doi: 10.3390/plants10050935, PMID 34067154

Jangir P, Shekhawat PK, Bishnoi A, Ram H, Soni P. Role of Serendipita indica in enhancing drought tolerance in crops. Physiol Mol Plant Pathol. 2021;116:101691. doi: 10.1016/j.pmpp.2021.101691

Newman MA, Sundelin T, Nielsen JT, Erbs G, MAMP. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci. 2013;4:139. doi: 10.3389/fpls.2013.00139, PMID 23720666

Kumar V, Nautiyal CS. Endophytes modulate plant genes: Present status and future perspectives. Curr Microbiol. 2023;80(11):353. doi: 10.1007/s00284-023-03466-y, PMID 37740026

Wasternack C, Hause B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot. 2013;111(6):1021-58. doi: 10.1093/aob/mct067, PMID 23558912

Rebouh NY, Khugaev CV, Utkina AO, Isaev KV, Mohamed ES, Kucher DE. Contribution of eco-friendly agricultural practices in improving and stabilizing wheat crop yield: A review. Agronomy. 2023;13(9):2400. doi: 10.3390/agronomy13092400

Tsipinana S, Husseiny S, Alayande KA, Raslan M, Amoo S, Adeleke R. Contribution of endophytes towards improving plant bioactive metabolites: A rescue option against red-taping of medicinal plants. Front Plant Sci. 2023;14:1248319. doi: 10.3389/fpls.2023.1248319, PMID 37771494

Vélëz H, Gauchan DP, García-Gil MD. Taxol and β-tubulins from endophytic fungi isolated from the Himalayan Yew, Taxus wallichiana Zucc. Front Microbiol. 2022;13:956855. doi: 10.3389/ fmicb.2022.956855, PMID 36246258

Zhang J, Zang S, Bai B, Fan S. Isolation and screening for limonin-producing endophytic bacteria from Citrus maxima (Burm.) Merr. cv. Shatian Yu. Biotechnol Appl Biochem. 2019;66(2):192-201. doi: 10.1002/bab.1721, PMID 30578642

Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, et al. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics. 2014;15:69. doi: 10.1186/1471-2164-15-69, PMID 24460898

Zaiyou J, Li M, Xiqiao H. An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Medicine (Baltimore). 2017;96(27):e7406. doi: 10.1097/MD.0000000000007406, PMID 28682896

Kang MK, Kim JH, Liu MJ, Jin CZ, Park DJ, Kim J, et al. New discovery on the nematode activity of aureothin and alloaureothin isolated from endophytic bacteria Streptomyces sp. AE170020. Sci Rep. 2022;12(1):3947. doi: 10.1038/s41598-022-07879-w, PMID 35273247

Zotchev SB. Unlocking the potential of bacterial endophytes from medicinal plants for drug discovery. Microb Biotechnol. 2024;17(2):e14382. doi: 10.1111/1751-7915.14382, PMID 38345183

Um S, Lee J, Kim SH. Lobophorin producing endophytic Streptomyces olivaceus JB1 associated with Maesa japonica (Thunb.) Moritzi & Zoll. Front Microbiol. 2022;13:881253. doi: 10.3389/fmicb.2022.881253, PMID 35572656.

Robinson SL, Panaccione DG. Diversification of ergot alkaloids in natural and modified fungi. Toxins (Basel). 2015;7(1):201-18. doi: 10.3390/toxins7010201, PMID 25609183.

Eldeghidy A, Abdel-Fattah G, El-Sayed AS, Abdel-Fattah GG. Production, bioprocessing and antiproliferative activity of camptothecin from Aspergillus terreus, endophyte of Cinnamomum camphora: restoring their biosynthesis by indigenous microbiome of C. camphora. Microb Cell Fact. 2023;22(1):143. doi: 10.1186/s12934-023-02158-3, PMID 37533061

Pu X, Chen F, Yang Y, Qu X, Zhang G, Luo Y. Isolation and characterization of Paenibacillus polymyxa LY214, a camptothecin-producing endophytic bacterium from Camptotheca acuminata. J Ind Microbiol Biotechnol. 2015;42(8):1197-202. doi: 10.1007/s10295-015- 1643-4, PMID 26124076

O A, Nagadesi PK. Endophytic, non-endophytic fungal alkaloids and its applications. Saudi J Pathol Microbiol. 2022;7(1):4-19. doi: 10.36348/ sjpm.2022.v07i01.002

Ding G, Song YC, Chen JR, Xu C, Ge HM, Wang XT, et al. Chaetoglobosin U, a cytochalasan alkaloid from endophytic Chaetomium globosum IFB-E019. J Nat Prod. 2006;69(2):302-4. doi: 10.1021/np050515+, PMID 16499339

Koul M, Lakra NS, Chandra R, Chandra S. Catharanthus roseus and prospects of its endophytes: A new avenue for production of bioactive metabolites. Int J Pharm Sci Res. 2013;4(7):2705-16.

Birat K, Binsuwaidan R, Siddiqi TO, Mir SR, Alshammari N, Adnan M, et al. Report on vincristine-producing endophytic fungus nigrospora zimmermanii from leaves of Catharanthus roseus. Metabolites. 2022;12(11):1119. doi: 10.3390/metabo12111119, PMID 36422259

Kovalev MA, Gladysh NS, Bogdanova AS, Bolsheva NL, Popchenko MI, Kudryavtseva AV. Editing metabolism, sex, and microbiome: How can we help poplar resist pathogens? Int J Mol Sci. 2024;25(2):1308. doi: 10.3390/ijms25021308, PMID 38279306

Singh A, Singh DK, Kharwar RN, White JF, Gond SK. Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: Insights, avenues, and challenges. Microorganisms. 2021;9(1):197. doi: 10.3390/microorganisms9010197, PMID 33477910

Wang L, Chen M, Lam PY, Dini-Andreote F, Dai L, Wei Z. Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome. 2022;10(1):233. doi: 10.1186/s40168- 022-01420-x, PMID 36527160

Seetharaman P, Gnanasekar S, Chandrasekaran R, Chandrakasan G, Kadarkarai M, Sivaperumal S. Isolation and characterization of anticancer flavone chrysin (5,7-dihydroxy flavone)-producing endophytic fungi from Passiflora incarnata L. leaves. Ann Microbiol. 2017;67(4):321-31. doi: 10.1007/s13213-017-1263-5

Priyanka GD, Shobha SS, Shruthi SD. Phytochemical analysis and molecular characterization of Moringa oleifera and its endophytic fungi. Int J Pharm Pharm Sci. 2023;15(4):39-46. doi: 10.22159/ ijpps.2023v15i4.47020

Donga S, Moteriya P, Chanda S. Evaluation of antimicrobial and synergistic antimicrobial properties of Pterocarpus santalinus. Asian J Pharm Clin Res. 2017;10(11):204. doi: 10.22159/ajpcr.2017. v10i11.20939

Erlianda D, Rizal MF, Budiardjo SB. Antibacterial effect of flavonoids from propolis produced by Trigona on atpase activity of streptococcus mutans. Int J Appl Pharm. 2018;9:6-9. doi: 10.22159/ ijap.2017.v9s2.02

Abo-Kadoum MA, Abouelela ME, Al Mousa AA, Abo-Dahab NF, Mosa MA, Helmy YA, et al. Resveratrol biosynthesis, optimization, induction, bio-transformation and bio-degradation in mycoendophytes. Front Microbiol. 2022;13:1010332. doi: 10.3389/ fmicb.2022.1010332, PMID 36304949

Nongkhlaw FM, Joshi SR. Horizontal gene transfer of the non-ribosomal peptide synthetase gene among endophytic and epiphytic bacteria associated with ethnomedicinal plants. Curr Microbiol. 2016;72(1):1-11. doi: 10.1007/s00284-015-0910-y, PMID 26362160

Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, et al. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology (Reading). 2002;148(9):2675-85. doi: 10.1099/00221287-148-9- 2675, PMID 12213914

Mülner P, Schwarz E, Dietel K, Herfort S, Jähne J, Lasch P, et al. Fusaricidins, polymyxins and volatiles produced by Paenibacillus polymyxa strains DSM 32871 and M1. Pathogens. 2021;10(11):1485. doi: 10.3390/pathogens10111485, PMID 34832640

Karwasara VS, Dixit VK. Culture medium optimization for camptothecin production in cell suspension cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley. Plant Biotechnol Rep. 2013;7(3):357-69. doi: 10.1007/s11816-012-0270-z

Shweta S, Zuehlke S, Ramesha BT, Priti V, Mohana Kumar P, Ravikanth G, et al. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry. 2010;71(1):117-22. doi: 10.1016/j.phytochem.2009.09.030, PMID 19863979

Rehman S, Shawl AS, Verma V, Kour A, Athar M, Andrabi R, et al. An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Prikl Biokhim Mikrobiol. 2008;44(2):225-31. doi: 10.1134/S0003683808020130, PMID 18669267

Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol. 2013;97(21):9365-75. doi: 10.1007/s00253-013-5163-8, PMID 23949997

Zhang Y, Han T, Ming Q, Wu L, Rahman K, Qin L. Alkaloids produced by endophytic fungi: A review. Nat Prod Commun. 2012;7(7):963-8. doi: 10.1177/1934578X1200700742, PMID 22908594

Wang Y, Xu L, Ren W, Zhao D, Zhu Y, Wu X. Bioactive metabolites from Chaetomium globosum L18, an endophytic fungus in the medicinal plant Curcuma wenyujin. Phytomedicine. 2012;19(3- 4):364-8. doi: 10.1016/j.phymed.2011.10.011, PMID 22112725

Li JY, Strobel G, Sidhu R, Hess WM, Ford EJ. Endophytic Taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology(Reading). 1996;142(8):2223-6. doi: 10.1099/13500872-142-8- 2223, PMID 8760934

Ismaiel AA, Ahmed AS, Hassan IA, El-Sayed ER, Karam El-Din AA. Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alternaria tenuissima. Appl Microbiol Biotechnol. 2017;101(14):5831-46. doi: 10.1007/ s00253-017-8354-x, PMID 28612104

Adhikari P, Singh M, Pandey A. Production of Taxol by endophytic fungi isolated from roots of Himalayan yew (Taxus wallichiana Zucc.). J Graph Era Univ. 2023;10:195-216. doi: 10.13052/jgeu0975- 1416.1028

Pathirana CK, Madhujith T, Eeswara J. Bael (Aegle marmelos L. Corrêa), a medicinal tree with immense economic potentials. Adv Agric. 2020;2020:1-13. doi: 10.1155/2020/8814018

Zhang P, Zhou PP, Yu LJ. An endophytic Taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol. 2009;59(3):227-32. doi: 10.1007/s00284-008-9270-1, PMID 19484305

Jam Ashkezari S, Fotouhifar KB. Diversity of endophytic fungi of common yew (Taxus baccata L.) in Iran. Mycol Progress. 2017;16(3):247-56. doi: 10.1007/s11557-017-1274-4

Liu AR, Xu T, Guo LD. Molecular and morphological description of Pestalotiopsis hainanensis sp. nov., a new endophyte from a tropical region of China. Fungal Divers. 2007;24:23-36.

Gangadevi V, Muthumary J. Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (Arjun tree). Biotechnol Appl Biochem. 2009;52(1):9-15. doi: 10.1042/ BA20070243, PMID 18254723

Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett. 2000;193(2):249-53. doi: 10.1111/j.1574- 6968.2000.tb09432.x, PMID 11111032

Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, et al. Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol. 2008;24(7):1115-21. doi: 10.1007/ s11274-007-9582-5

Jayanthi G, Karthikeyan K, Muthumary J. Isolation and characterization of anticancer compound, Taxol from an endophytic fungus Phomopsis longicolla. Int J Curr Res. 2015;7:12727-34.

Almatar M, Makky EA. Chemotherapeutic agents: Taxol and vincristine isolated from endophytic fungi. Int J Curr Pharm Res. 2015;6:80-8.

Fill TP, da Silva BF, Rodrigues-Fo E. Biosynthesis of phenylpropanoid amides by an endophytic Penicillium brasilianum found in root bark of Melia azedarach. J Microbiol Biotechnol. 2010;20(3):622-9. PMID 20372037

Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, et al. Endophytic Fungi for Producing Bioactive Compounds Originally from their Plants, Host. Badajoz: Formatex Research Center; 2010. p. 567-76.

Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, et al. Endophytic fungi-alternative sources of cytotoxic compounds: A review. Front Pharmacol. 2018;9:309. doi: 10.3389/ fphar.2018.00309, PMID 29755344

Huang JX, Zhang J, Zhang XR, Zhang K, Zhang X, He XR. Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm Biol. 2014;52(10):1237-43. doi: 10.3109/13880209.2014.885061, PMID 24863281

Eyberger AL, Dondapati R, Porter JR. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod. 2006;69(8):1121-4. doi: 10.1021/np060174f, PMID 16933860

Biswas D, Biswas P, Nandy S, Mukherjee A, Pandey DK, Dey A. Endophytes producing podophyllotoxin from Podophyllum sp. and other plants: A review on isolation, extraction and bottlenecks. S Afr J Bot. 2020;134:303-13. doi: 10.1016/j.sajb.2020.02.038

Thi Tran H, Thu Nguyen G, Thi Nguyen HH, Thi Tran H, Hong Tran Q, Ho Tran Q, et al. Isolation and cytotoxic potency of endophytic fungi associated with Dysosma difformis, a study for the Novel Resources of Podophyllotoxin. Mycobiology. 2022;50(5):389-98. doi: 10.1080/12298093.2022.2126166, PMID 36404896

Yousefzadi M, Sharifi M, Behmanesh M, Moyano E, Bonfill M, Cusido RM, et al. Podophyllotoxin: Current approaches to its biotechnological production and future challenges. Eng Life Sci. 2010;10(4):281-92. doi: 10.1002/elsc.201000027

Kumar A, Patil D, Rajamohanan PR, Ahmad A. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One. 2013;8(9):e71805. doi: 10.1371/journal.pone.0071805, PMID 24066024

Kuncharoen N, Bunbamrung N, Intaraudom C, Choowong W, Thawai C, Tanasupawat S, et al. Antimalarial and antimicrobial substances isolated from the endophytic actinomycete, Streptomyces aculeolatus MS1-6. Phytochemistry. 2023;207:113568. doi: 10.1016/j.phytochem.2022.113568, PMID 36565946

Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, et al. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology (Reading). 2004;150(4):785-93. doi: 10.1099/ mic.0.26645-0, PMID 15073289

Yang A, Zeng S, Yu L, He M, Yang Y, Zhao X, et al. Characterization and antifungal activity against Pestalotiopsis of a fusaricidin-type compound produced by Paenibacillus polymyxa Y-1. Pestic Biochem Physiol. 2018;147:67-74. doi: 10.1016/j.pestbp.2017.08.012, PMID 29933995

Yang YH, Yang DS, Li GH, Liu R, Huang XW, Zhang KQ, et al. New secondary metabolites from an engineering mutant of endophytic Streptomyces sp. CS. Fitoterapia. 2018;130:17-25. doi: 10.1016/j. fitote.2018.07.019, PMID 30076887

Zhu Y, Kong Y, Hong Y, Zhang L, Li S, Hou S, et al. Huoshanmycins A-C, new polyketide dimers produced by endophytic Streptomyces sp. HS-3-L-1 from Dendrobium huoshanense. Front Chem. 2021;9:807508. doi: 10.3389/fchem.2021.807508, PMID 35237566

Bekiesch P, Oberhofer M, Sykora C, Urban E, Zotchev SB. Piperazic acid containing peptides produced by an endophytic Streptomyces sp. isolated from the medicinal plant Atropa belladonna. Nat Prod Res. 2021;35(7):1090-6. doi: 10.1080/14786419.2019.1639174, PMID 31303055

Zhang C, Fan L, Fan S, Wang J, Luo T, Tang Y, et al. Cinnamomum cassia Presl: A review of its traditional uses, phytochemistry, pharmacology and toxicology. Molecules. 2019;24(19):3473. doi: 10.3390/molecules24193473, PMID 31557828

Wang W, Kim S, Vu TH, Quach NT, Oh E, Park KH, et al. Bioactive piperazic acid-bearing cyclodepsipeptides, Lydiamycins E-H, from an Endophytic Streptomyces sp. Associated with Cinnamomum cassia. J Nat Prod. 2023;86(4):751-8. doi: 10.1021/acs.jnatprod.2c00902, PMID 36812487

Shang NN, Zhang Z, Huang JP, Wang L, Luo J, Yang J, et al. Glycosylated piericidins from an endophytic Streptomyces with cytotoxicity and antimicrobial activity. J Antibiot (Tokyo). 2018;71(7):672-6. doi: 10.1038/s41429-018-0051-1, PMID 29651143

Kim N, Shin JC, Kim W, Hwang BY, Kim BS, Hong YS, et al. Cytotoxic 6-alkylsalicylic acids from the endophytic Streptomyces laceyi. J Antibiot (Tokyo). 2006;59(12):797-800. doi: 10.1038/ ja.2006.105, PMID 17323647

Ding L, Maier A, Fiebig HH, Lin WH, Hertweck C. A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem. 2011;9(11):4029-31. doi: 10.1039/c1ob05283g, PMID 21528153

Ding L, Münch J, Goerls H, Maier A, Fiebig HH, Lin WH, et al. Xiamycin, a pentacyclic indolosesquiterpene with selective anti- HIV activity from a bacterial mangrove endophyte. Bioorg Med Chem Lett. 2010;20(22):6685-7. doi: 10.1016/j.bmcl.2010.09.010, PMID 20880706

Rahman MM, Ishtiaque GM, Rahat SA, Hossain MA, Islam MR, Maeesa SK, et al. Multifunctional role of natural products for therapeutic approaches of prostate cancer: an updated review. J Herb Med. 2023;42:100803. doi: 10.1016/j.hermed.2023.100803

Nawara HM, Afify SM, Hassan G, Zahra MH, Seno A, Seno M. Paclitaxel-based chemotherapy targeting cancer stem cells from mono-to combination therapy. Biomedicines. 2021;9(5):500. doi: 10.3390/biomedicines9050500, PMID 34063205

Liu WC, Gong T, Zhu P. Advances in exploring alternative Taxol sources. RSC Adv. 2016;6(54):48800-9. doi: 10.1039/C6RA06640B

Swamy MK, Das T, Nandy S, Mukherjee A, Pandey DK, Dey A. Endophytes for the production of anticancer drug, paclitaxel. In: Paclitaxel. Netherlands: Elsevier; 2022. p. 203-28. doi: 10.1016/ B978-0-323-90951-8.00012-6

Banadka A, Narasimha SW, Dandin VS, Naik PM, Vennapusa AR, Melmaiee K, et al. Biotechnological approaches for the production of camptothecin. Appl Microbiol Biotechnol. 2024;108(1):382. doi: 10.1007/s00253-024-13187-2, PMID 38896329

Sonowal S, Gogoi U, Buragohain K, Nath R. Endophytic fungias a potential source of anti-cancer drug. Arch Microbiol. 2024;206(3):122. doi: 10.1007/s00203-024-03829-4, PMID 38407579

Singh N, Agrawal P. A comprehensive review on the pharmacognostic and toxicological profile of Podophyllum peltatum (Bajiaolian). Pharmacol Res Mod Chin Med. 2024;10:100353. doi: 10.1016/j. prmcm.2023.100353

Kao WF, Hung DZ, Tsai WJ, Lin KP, Deng JF. Podophyllotoxin intoxication: toxic effect of Bajiaolian in herbal therapeutics. Hum Exp Toxicol. 1992;11(6):480-7. doi: 10.1177/096032719201100607, PMID 1361136

Zhang X, Rakesh KP, Shantharam CS, Manukumar HM, Asiri AM, Marwani HM, et al. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorg Med Chem. 2018;26(2):340-55. doi: 10.1016/j. bmc.2017.11.026

Tiwari P, Bae H. Endophytic fungi: Key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms. 2022;10(2):360. doi: 10.3390/microorganisms10020360, PMID 35208814

Li J, Sun H, Jin L, Cao W, Zhang J, Guo CY, et al. Alleviation of podophyllotoxin toxicity using coexisting flavonoids from Dysosma versipellis. PLOS One. 2013;8(8):e72099. doi: 10.1371/journal. pone.0072099. PMID 23991049

Kumar A, Ahmad A. Biotransformation of vinblastine to vincristine by the endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. Biocatal Biotransform. 2013;31(2):89-93. doi: 10.3109/10242422.2013.776544

Published

07-05-2025

How to Cite

SHOBHA SINGARAPALLE, et al. “BIOACTIVE SECONDARY METABOLITES DERIVED FROM ENDOPHYTES: A REVIEW”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 5, May 2025, pp. 37-53, doi:10.22159/ajpcr.2025v18i5.53898.

Issue

Section

Review Article(s)