MOLECULAR DOCKING STUDIES OF ISATIN-LINKED CHALCONE DERIVATIVES AS ANTI-TB DRUG CANDIDATES AND THEIR ADMET PREDICTION
DOI:
https://doi.org/10.22159/ajpcr.2025v18i4.54015Keywords:
Isatin-linked chalcones, Molecular docking,, InhA inhibitors, Anti-tuberculosis agents, Drug resistance, Absorption, distribution, metabolism, excretion, toxicity prediction, Structure-activity relationshipAbstract
Objective: Molecular docking studies were carried out on fifteen novel Isatin-linked chalcone derivatives to evaluate their potential as anti-tuberculosis drug candidates targeting NADH-Dependent 2-trans Enoyl–Acyl Carrier Protein Reductase (InhA).
Methods: The compounds were designed in-silico and optimized using Molegro Virtual Docker (MVD) and AutoDock tools to target the InhA enzyme (PDB ID: 4QXM). Molecular docking simulations indicated that compounds 6-9 exhibited superior binding affinities (-10.5 kcal/mol) compared to the standard drugs Isoniazid (-6.1 kcal/mol) and NAD+ (-10.3 kcal/mol).
Results: Analysis of protein-ligand interactions demonstrated that the most active compounds formed stable hydrogen bonds with key residues PHE-41, THR-39, and LEU-63 in the InhA binding pocket. ADMET predictions indicated favorable drug-like properties for all synthesized compounds, with acceptable molecular weights (350-450 Da), optimal lipophilicity (LogP< 5), and high gastrointestinal absorption rates. The compounds showed compliance with Lipinski’s rule of five and exhibited blood-brain barrier permeability.
Conclusion: The direct targeting of InhA by these chalcone derivatives, independent of KatG activation, indicates potential effectiveness against drug-resistant Mycobacterium tuberculosis strains.
Downloads
References
Madriwala B, Suma BV, Jays J. Molecular docking study of hentriacontane for anticancer and antitubercular activity. Int J Chem Res. 2022 Oct;6(4):1-4.
Dheda K, Gumbo T, Maartens G, McNerney R, Murray M, Furin J, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med. 2017;5(4):291-360.
Cohen KA, Abeel T, Manson McGuire A, Desjardins CA, Munsamy V, Shea TP, et al. Evolution of extensively drug-resistant tuberculosis over four decades: Whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med. 2015;12(9):e1001880.
Odhar HA, Hashim AF, Ahjel SW, Humadi SS. Virtual screening of FDA-approved drugs by molecular docking and dynamics simulation to recognize potential inhibitors against Mycobacterium tuberculosis enoyl-acyl carrier protein reductase enzyme. Int J Appl Pharm. 2024 Jan;16(1):261-6.
Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, et al. Multidrug-resistant and extensively drug-resistant tuberculosis: A threat to global control of tuberculosis. Lancet. 2010;375(9728):1830-43.
Tiberi S, du Plessis N, Walzl G, Vjecha MJ, Rao M, Ntoumi F, et al. Tuberculosis: Progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis. 2018;18(7):e183-98.
Lohith NC, Puttaswamy R, Devaraju. Design, synthesis, anti-cancer activity, and molecular docking studies of lignin-pyrrole derivatives as a JAK3 inhibitor. Asian J Pharm Clin Res. 2024 Dec;17(12):64-72.
Dessen A, Quemard A, Blanchard JS, Jacobs WR Jr., Sacchettini JC. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science. 1995;267(5204):1638-41.
Zhang Y, Heym B, Allen B, Young D, Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992;358(6387):591-3.
Rozwarski DA, Grant GA, Barton DH, Jacobs WR Jr.,
Sacchettini JC. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science. 1998;279(5347):98-102.
Pan P, Tonge PJ. Targeting InhA, the FASII enoyl-ACP reductase: SAR studies on novel inhibitor scaffolds. Curr Top Med Chem. 2012;12(7):672-93.
Mahapatra DK, Asati V, Bharti SK. An updated patent review of therapeutic applications of chalcone derivatives (2014-present). Expert Opin Ther Pat. 2019;29(5):385-406.
Rawat BS, Shukla SK. Synthesis and evaluation of some new isatin derivatives for antimicrobial activity. Med Chem Res. 2016;25:2671-80.
Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones: A mini review. Eur J Med Chem. 2014;85:758-77.
Meleddu R, Distinto S, Corona A, Tramontano E, Bianco G, Melis C, et al. isatin thiazoline hybrids as dual inhibitors of HIV-1 reverse transcriptase. Eur J Med Chem. 2017;141:130-9.
Lu X, Liu X, Wan B, Franzblau SG, Chen L, Zhou C, et al. Synthesis and evaluation of anti-tubercular and antibacterial activities of new 4-(2,6-dichlorobenzyloxy)phenyl thiazole, oxazole and imidazole derivatives. Eur J Med Chem. 2012;49:164-71.
He X, Alian A, Ortiz de Montellano PR. Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorg Med Chem. 2007;15(21):6649-58.
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61.
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-91.
Akramullazi A, Sultana S, Hossen F, Asraf A, Kudrat-E-Zahan. Isonicotinohydrazide derived Schiff base-transition metal complexes: Structure with biological activity. Int J Chem Res. 2024 Jul;8(3):1-9. doi: 10.22159/ijcr.2024v8i3.230
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27(3):221-34.
Schüttelkopf AW, van Aalten DM. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 8):1355-63.
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
Adrian MF, Syahputra RA, Astyka R, Sumaiyah S, Harahap MA, Aini Z. The potential effect of aporphine alkaloids from Nelumbo nucifera Gaertn. As anti-breast cancer based on network pharmacology and molecular docking. Int J App Pharm. 2024;16(1):280-7.
Daina A, Zoete V. A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 2016;11(11):1117-21.
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-25.
Rydberg P, Gloriam DE, Olsen L. The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics. 2010;26(23):2988-9.
Kumari R, Kumar R, Open Source Drug Discovery Consortium, Lynn A. g_mmpbsa --A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951-62.
Huang J, MacKerell AD Jr. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J Comput Chem. 2013;34(25):2135-45.
Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J Comput Chem. 2008;29(11):1859-65.
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463-72.
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci USA. 2001;98(18):10037-41.
Vilchèze C, Jacobs WR Jr. The mechanism of isoniazid killing: Clarity through the scope of genetics. Annu Rev Microbiol. 2007;61:35-50.
Lu XY, You QD, Chen YD. Recent progress in the identification and development of InhA direct inhibitors of Mycobacterium tuberculosis. Mini Rev Med Chem. 2010;10(3):181-92.
Martínez-Hoyos M, Perez-Herran E, Gulten G, Encinas L, Álvarez- Gómez D, Alvarez E, et al. Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor. EBioMedicine. 2016;8:291-301.
Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994;263(5144):227-30.
Manjunatha UH, Rao SP, Kondreddi RR, Noble CG, Camacho LR, Tan BH, et al. Direct inhibitors of InhA are active against Mycobacterium tuberculosis. Sci Transl Med. 2015;7(269):269ra3.
Sullivan TJ, Truglio JJ, Boyne ME, Novichenok P, Zhang X, Stratton CF, et al. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem Biol. 2006;1(1):43-53.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26.
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615-23.
Jarlier V, Nikaido H. Mycobacterial cell wall: Structure and role in natural resistance to antibiotics. FEMS Microbiol Lett. 1994;123(1-2):11-8.
Marrakchi H, Lanéelle G, Quémard A. InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology (Reading). 2000;146(Pt 2):289-96.
Wellington S, Hung DT. The expanding diversity of Mycobacterium tuberculosis drug targets. ACS Infect Dis. 2018;4(5):696-714.
Rawat R, Whitty A, Tonge PJ. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: Adduct affinity and drug resistance. Proc Natl Acad Sci USA. 2003;100(24):13881-6.
Published
How to Cite
Issue
Section
Copyright (c) 2025 SHINY MARAPATLA

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.