PREPARATION AND EVALUATION OF VORICONAZOLE HYDROGEL USING CYCLODEXTRIN-BASED NANO SPONGES
DOI:
https://doi.org/10.22159/ajpcr.2025v18i5.54060Keywords:
Voriconazole, Box-Behnken design,, Nanosponges,, Freeze drying, Inclusion complex, Skin permeabilityAbstract
Objective: This project aimed to develop a cyclodextrin-based nanosponge (CDNS) gel for topical skin application to enhance the therapeutic efficacy, distribution, and stability of voriconazole (VO). The focus was on improving drug release, skin penetration, and antifungal activity while preventing VO’s photodegradation and chemical degradation.
Methods: CDNS was prepared by crosslinking cyclodextrins with diphenyl carbonate using convection heating. VO-loaded nanosponges (VONS) were freeze-dried and incorporated into a hydrogel formulation with Carbopol 974, propylene glycol, and ethanol, optimized through Box-Behnken design. Procedural parameters and quality attributes were analyzed using statistical tools like analysis of variance. The formulation was characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) to confirm the inclusion complex formation. Particle size, polydispersity index, zeta potential, and encapsulation efficiency were evaluated. Transmission electron microscopy (TEM) was used to assess the nanosponges’ morphology.
Results: Optimized VONS exhibited particle sizes of 50–75 nm with minimal polydispersity, ensuring uniform distribution. High zeta potential values confirmed stability and low agglomeration. FTIR, DSC, and XRD confirmed the formation of inclusion complexes, while TEM revealed spherical nanoparticles. The encapsulation efficiency was high, enhancing drug loading. In vitro studies showed faster drug release from VONS compared to pure VO. Topical hydrogels (VONS2, VONS8, and VONS12) exhibited controlled drug release and superior skin penetration over 12 h. The formulation prevented VO photodegradation and chemical degradation for up to 6 months, with significant improvements in antifungal efficacy and stability.
Conclusion: The developed CDNS gel demonstrated controlled drug release, enhanced skin penetration, and superior storage stability, making it a promising strategy for improving VO’s therapeutic impact in topical applications. The formulation successfully addressed challenges like photodegradation, chemical degradation, and low skin permeability.
Downloads
References
Prajapati M, Shende S, Jain V, Gupta A, Kumar Goyal M. Formulation and in vitro percutaneous permeation and skin accumulation of voriconazole microemulsified hydrogel. Asian J Pharm Technol. 2021 Oct-Dec;11(4):267-72. doi: 10.52711/2231-5713.2021.00044
Teixeira MM, Carvalho DT, Sousa E, Pinto E. New antifungal agents with azole moieties. Pharmaceuticals (Basel). 2022 Nov;15(11):1427. doi: 10.3390/ph15111427, PMID 36422557
Pemán J, Salavert M, Cantón E, Jarque I, Romá E, Zaragoza R, et al. Voriconazole in the management of nosocomial invasive fungal infections. Ther Clin Risk Manag. 2006 Jun;2(2):129-58. doi: 10.2147/ tcrm.2006.2.2.129, PMID 18360588
Veringa A, Geling SF, Span LF, Vermeulen KM, Zijlstra JG, Van Der Werf TS, et al. Bioavailability of voriconazole in hospitalised patients. Int J Antimicrob Agents. 2017 Feb;49(2):243-6. doi: 10.1016/j. ijantimicag.2016.10.010, PMID 28012684
Purkins L, Wood N, Kleinermans D, Greenhalgh K, Nichols D. Effect of food on the pharmacokinetics of multiple-dose oral voriconazole. Br J Clin Pharmacol. 2003 Jul;56(1) Suppl 1:17-23. doi: 10.1046/j.1365- 2125.2003.01994.x, PMID 14616409
Demir SÖ, Atici S, Akkoç G, Yakut N, İkizoğlu NB, Eralp EE, et al. Neurologic adverse events associated with voriconazole therapy: Report of two pediatric cases. Case Rep Infect Dis. 2016 Dec;2016:3989070. doi: 10.1155/2016/3989070, PMID 27313918
Pahuja P, Kashyap H, Pawar P. Design and evaluation of HP-β-CD based voriconazole formulations for ocular drug delivery. Curr Drug Deliv. 2014 Apr;11(2):223-32. doi: 10.2174/156720181066613122410 5205, PMID 24365062
De Almeida Campos L, Fin MT, Santos KS, De Lima Gualque MW, Freire Cabral AK, Khalil NM, et al. Nanotechnology-based approaches for voriconazole delivery applied to invasive fungal infections. Pharmaceutics. 2023 Jan;15(1):266. doi: 10.3390/ pharmaceutics15010266, PMID 36678893
Kaur A, Dubey G, Sharma N, Pant R, Bharatam PV, Tikoo K, et al. High dose nanocrystalline solid dispersion powder of voriconazole for inhalation. Int J Pharm. 2022 Nov;622:121827. doi: 10.1016/j. ijpharm.2022.121827, PMID 35589006
Anil L, Mohandas S. In vitro antioxidant and anticancer activity of Macranga peltata leaf extracts on lung cancer cell lines. Int J Curr Pharm Res. 2023 Apr;15(4):26-32. doi: 10.22159/ijcpr.2023v15i4.3019
Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives. Int J Nanomedicine. 2021 Apr;16:1313-30. doi: 10.2147/IJN.S289443, PMID 33628022
Conceicao J, Adeoye O, Cabral-Marques HM, Lobo JM. Cyclodextrins as drug carriers in pharmaceutical technology: The state of the art. Curr Pharm Des. 2018 May;24(13):1405-33. doi: 10.2174/13816128246661 71218125431, PMID 29256342
Reddy KS, Bhikshapathi D, Kumar JP. Unlocking dabrafenib’s potential: A quality by design (QBD) journey to enhance permeation and oral bioavailability through nanosponge formulation. Braz J Pharm Sci. 2025;61:e24209. doi: 10.1590/s2175-97902025e24209
Rao MR, Chaudhari J, Trotta F, Caldera F. Investigation of cyclodextrin-based nanosponges for solubility and bioavailability enhancement of rilpivirine. AAPS PharmSciTech. 2018 Dec;19(5):2358-69. doi: 10.1208/s12249-018-1064-6, PMID 29869305
Kumar S, Dalal P, Rao R. Cyclodextrin nanosponges: A promising approach for modulating drug delivery. In: Colloid Science Pharmceutical Nanotechnology. Germany: BoD - Books on Demand; 2020 Jan. p. 79.
Krabicová I, Appleton SL, Tannous M, Hoti G, Caldera F, Rubin Pedrazzo A, et al. History of cyclodextrin nanosponges. Polymers. 2020 May;12(5):1122. doi: 10.3390/polym12051122, PMID 32423091
Desai D, Shende P. Drug-free cyclodextrin-based nanosponges for antimicrobial activity. J Pharm Innov. 2021 Aug;16(2):258-68. doi: 10.1007/s12247-020-09442-4
Vakilinezhad MA, Tanha S, Montaseri H, Dinarvand R, Azadi A, Akbari Javar H. Application of response surface method for preparation, optimization, and characterization of nicotinamide loaded solid lipid nanoparticles. Adv Pharm Bull. 2018 Jun;8(2):245-56. doi: 10.15171/ apb.2018.029, PMID 30023326
Priyanka K, Sahu PL, Singh S. Optimization of processing parameters for the development of Ficus religiosa L. extract loaded solid lipid nanoparticles using central composite design and evaluation of antidiabetic efficacy. J Drug Deliv Sci Technol. 2018 Jan;43:94-102. doi: 10.1016/j.jddst.2017.08.006
Nekkaa A, Benaissa A, Lalaouna AE, Mutelet F, Canabady-Rochelle L. Optimization of the extraction process of bioactive compounds from Rhamnus alaternus Leaves using Box-Behnken experimental design. J Appl Res Med Aromat Plants. 2021 Jul;25:100345. doi: 10.1016/j. jarmap.2021.100345
Ahmad A, Rehman MU, Wali AF, El-Serehy HA, Al-Misned FA, Maodaa SN, et al. Box-Behnken response surface design of polysaccharide extraction from Rhododendron arboreum and the evaluation of its antioxidant potential. Molecules. 2020 Aug;25(17):3835. doi: 10.3390/ molecules25173835, PMID 32846866
Sarfaraz MD, Mehboob SZ, Doddayya H. Preparation and characterization of fluconazole topical nanosponge hydrogel. Int J Pharm Pharm Sci. 2024 Apr;16(4):18-26.
Viswaja M, Bhikshapathi DV, Palanati M, Babu AK, Goje A. Formulation and evaluation of ibrutinib nanosponges incoporated tablet. Int J Appl Pharm. 2023 Feb;15(2):92-7. doi: 10.22159/ijap.2023v15i2.46813
Anusha R, Mothilal M. Development of nanosponges-based topical formulation for the effective delivery of selected antifungal drug. Int J Appl Pharm. 2024 May;16(5):146-55. doi: 10.22159/ ijap.2024v16i5.5146625. Ghurghure SM, Jadhav T, Kale S, Phatak AA. Formulation and evaluation of posaconazole loaded nanostructured lipid carriers for topical drug delivery system. Curr Trends Pharm Pharm Chem. 2022 Sep;4(3):126-34. doi: 10.18231/j.ctppc.2022.022
Swaminathan S, Vavia PR, Trotta F, Torne S. Formulation of β-cyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem. 2007 Apr;57(1-4):89-94. doi: 10.1007/s10847-006- 9216-9
Milanowski B, Wosicka-Frąckowiak H, Główka E, Sosnowska M, Woźny S, Stachowiak F, et al. Optimization and evaluation of the in vitro permeation parameters of topical products with non-steroidal anti-inflammatory drugs through Strat-M® membrane. Pharmaceutics. 2021 Aug;13(8):1305. doi: 10.3390/pharmaceutics13081305, PMID 34452264
Hummer J, Birngruber T, Sinner F, Page L, Toner F, Roper CS, et al. Optimization of topical formulations using a combination of in vitro methods to quantify the transdermal passive diffusion of drugs. Int J Pharm. 2022 Apr;620:121737. doi: 10.1016/j.ijpharm.2022.121737, PMID 35413396
Published
How to Cite
Issue
Section
Copyright (c) 2025 Apsar Pasha, Seema Tomar

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.