MOLECULAR MECHANISM AND THERAPEUTIC POTENTIAL OF BERBERINE, BAICALEIN, ORIDONIN IN THE TREATMENT OF COLORECTAL CANCER – A REVIEW

Authors

  • SURUTHI RAMAMOORTHY Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
  • JUBILEE RAMASAMY Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
  • GOPINATH SAMBASIVAM Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
  • NITHYA VIJAYAN Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
  • DHARSHINI JAISANKAR Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i4.54115

Keywords:

Colorectal cancer, Molecular pathway, Berberine, Baicalein,, Oridonin.

Abstract

The aim of this research is to assess the effect of berberine and baicalein and oridonin (ORI) treatment on colorectal cancer (CRC) cells. The research examines how these compounds bring about cellular alterations, stop the cell cycle progression, and trigger cell death. The cancer-fighting agents berberine and baicalein together with ORI demonstrate strong anticancer properties against CRC tissues through metabolic instability and cell cycle arrest leading to apoptosis. ORI affects the activation of TP53/TCF4 mechanisms which creates endoplasmic reticulum stress and then leads to higher reactive oxygen species production alongside calcium ion imbalances. The retinoid X receptor alpha activation mechanism performs better than berberine in colon cancer cell growth inhibition. Berberine suppresses CRC progression through its ability to influence the transforming growth factor-beta signaling pathway together with its inhibitory action on epithelial-mesenchymal transition and its weakening effect on colorectal liver metastasis. The altered composition of gut microbes reduces tissue tumorigenesis as well as total microbial abundance. Berberine shows its anti-metastatic capabilities by blocking the actions of matrix metallopeptidase (MMP)-2 and MMP-9 enzymes which play important roles in cancer cells spreading during metastasis. The suppression of CRC cell growth occurs through berberine-mediated G2/M cell cycle arrest and cell death mechanism that results in cyclin B1 and cdc2 and cdc25c protein downregulation. The anticancer and anti-inflammatory agent baicalein acts as a major element in developing tumorous lesions associated with colitis. The compound speeds up G2/M phase cell cycle arrest through its role in regulating the toll-like receptor 4/nuclear factor-kappa B signaling pathway in HT-29 colon cancer cells. The regulatory mechanisms of this process decrease tumorigenesis that stems from inflammation while also restricting CRC cell multiplication.

Downloads

Download data is not yet available.

References

Aithal RR, Shetty RS, Binu VS, Mallya SD, Shenoy KR, Nair S. Colorectal cancer and its risk factors among patients attending a tertiary care hospital in southern Karnataka, India. Asian J Pharm Clin Res. 2017 Apr1;10(4):109-12. doi: 10.22159/ajpcr.2017.v10i4.16194

Blessy S, Devi RG, Selvaraj J, Priya AJ. Anticancer potential of A. marmelos fruit extract in human colon cancer cell lines is mediated through the regulation of EMT signalling molecules. J Pharm Res Int. 2021;33(60B):2355-62. doi: 10.9734/jpri/2021/v33i60B34884

Clarkson M, McDonald F, Khine R. A local evaluation of the non-surgical oncology advanced practice curriculum framework. Int J Adv Pract. 2024;2(4):185-90. doi: 10.12968/ijap.2023.0055

Chen G, Zhang Y, Zhou Y, Luo H, Guan H, An B. Targeting the mTOR pathway in hepatocellular carcinoma: The therapeutic potential of natural products. J Inflamm Res. 2024;17:10421-40. doi: 10.2147/JIR. S501270

Feng Y, Lu J, Jiang J, Wang M, Guo K, Lin S. Berberine: Potential preventive and therapeutic strategies for human colorectal cancer. Cell Biochem Funct. 2024 Jun;42(4):e4033. doi: 10.1002/cbf.4033

Ali MA, Khan N, Ali A, Akram H, Zafar N, Imran K, et al. Oridonin from Rabdosia rubescens: An emerging potential in cancer therapy–A comprehensive review. Food Sci Nutr. 2024 Feb 1;12(5):3046-67. doi: 10.1002/fsn3.3986

Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed Forootan F, Nasr Esfahani MH, et al. Signaling pathways involved in colorectal cancer progression. Cell Biosci. 2019 Dec 2;9(1):97. doi: 10.1186/ s13578-019-0361-4

Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol. 2019 Jan 6;14(2):89-103. doi: 10.5114/pg.2018.81072.3

Fatima N, Baqri SS, Alsulimani A, Fagoonee S, Slama P, Kesari KK, et al. Phytochemicals from Indian ethnomedicines: Promising prospects for the management of oxidative stress and cancer. Antioxidants (Basel). 2021 Oct 13;10(10):1606. doi: 10.3390/antiox10101606

Ahmad R, Singh JK, Wunnava A, Al-Obeed O, Abdulla M, Srivastava SK. Emerging trends in colorectal cancer: Dysregulated signaling pathways. Int J Mol Med. 2021 Mar;47(3):14. doi: 10.3892/ ijmm.2021.4847

Gharib E, Robichaud GA. From crypts to cancer: A holistic perspective on colorectal carcinogenesis and therapeutic strategies. Int J Mol Sci. 2024 Aug 30;25(17):9463. doi: 10.3390/ijms25179463

Xu H, Ren SM, Wang Y, Zhang TT, Lu J. Abnormal activation of the Ras/MAPK signaling pathway in oncogenesis and progression. Cancer Adv. 2025;8:e25002. doi: 10.53388/2025825002

Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther. 2023 Dec 18;8(1):455. doi: 10.1016/j.ejmech.2016.01.012

Sachdeo RA, Charde MS, Chakole RD. Colon rectal cancer: An overview. Asian J Res Pharm Sci. 2020;10(13):211-23. doi: 10.5958/2231-5359.2020.0040

Pezhouh MK, Montgomery EA. Pathological evaluation, classification, and staging of colorectal cancers. In: Yalcin S, Philip P, editors. Textbook of Gastrointestinal Oncology. Cham; Springer; 2019. doi: 10.1007/978-3-030-18890-0_3

Available from: https://my.clevelandclinic.org/health/diseases/14501- colorectal-colon-cancer

Lampada A. Targeting Autophagy in Colorectal Cancer (Doctoral Dissertation, UCL (University College London).

Hu X, Yuan X, Zhang G, Song H, Ji P, Guo Y, et al. The intestinal epithelial-macrophage-crypt stem cell axis plays a crucial role in regulating and maintaining intestinal homeostasis. Life Sci. 2024 Mar 8;344:122452. doi: 10.1016/j.lfs.2024.122452

Trampotová E. Molecular Logic of the Notch Ligands in Development and Disease. Praha: Univerzita Karlova; 2023. 20. Ziouti F, Ebert R, Rummler M, Krug M, Müller-Deubert S, Lüdemann M, et al. NOTCH signaling is activated through mechanical strain in human bone marrow-derived mesenchymal stromal cells. Stem Cells Int. 2019;2019:5150634. doi: 10.1155/2019/5150634

Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: Cell fate control and signal integration in development. Science. 1999;284(5415):770-6 doi: 10.1126/science.284.5415.770

Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR, et al. Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now? Int J Mol Sci. 2021 Sep 23;22(19):10260. doi: 10.1371/journal. pone.0104891

Lee AY, Christensen SM, Duong N, Tran QA, Xiong HM, Huang J, et al. Sirt3 pharmacologically promotes insulin sensitivity through PI3/ AKT/mTOR and their downstream pathway in adipocytes. Int J Mol Sci. 2022 Mar 29;23(7):3740. doi: 10.3390/ijms23073740

Katan M, Cockcroft S. Phosphatidylinositol (4, 5) bisphosphate: Diverse functions at the plasma membrane. Essays Biochem. 2020 Sep;64(3):513-31. doi: 10.1042/EBC20200041

Dolatshahi M, Ranjbar Hameghavandi MH, Sabahi M, Rostamkhani S. Nuclear factor‐kappa B (NF‐κB) in pathophysiology of Parkinson disease: Diverse patterns and mechanisms contributing to neurodegeneration. Eur J Neurosci. 2021 Jul;54(1):4101-23. doi: 10.1111/ejn.15242

Jabea Ekabe C, Asaba Clinton N, Agyei EK, Kehbila J. Role of apoptosis in HIV pathogenesis. Adv Virol. 2022;2022(1):8148119. doi: 10.1155/2022/8148119

Peng Y, Wang Y, Zhou C, Mei W, Zeng C. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front Oncol. 2022 Mar 24;12:819128. doi: 10.3389/fonc.2022.819128

Kasprzak A. Angiogenesis-related functions of Wnt signaling in colorectal carcinogenesis. Cancers. 2020 Dec 2;12(12):3601. doi: 10.3390/cancers12123601

Jebelli A, Baradaran B, Mosafer J, Baghbanzadeh A, Mokhtarzadeh A, Tayebi L. Recent developments in targeting genes and pathways by RNAi‐based approaches in colorectal cancer. Med Res Rev. 2021 Jan;41(1):395-434. doi: 10.1002/med.21735

Nik Nabil WN, Xi Z, Song Z, Jin L, Zhang XD, Zhou H, et al. Towards a framework for better understanding of quiescent cancer cells. Cells. 2021;10:562. doi: 10.3390/cells10030562

Xiang X, Palasuberniam P, Pare R. The role of estrogen across multiple disease mechanisms. Curr Issues Mol Biol. 2024 Jul 29;46(8):8170-96. doi: 10.3390/cimb46080483

Sphyris N, Hodder MC, Sansom OJ. Subversion of niche-signalling pathways in colorectal cancer: what makes and breaks the intestinal stem cell. Cancers (Basel). 2021 Feb 27;13(5):1000. doi: 10.3390/ cancers13051000

Mah AT, Yan KS, Kuo CJ. Wnt pathway regulation of intestinal stem cells. J Physiol. 2016 Sep 1;594(17):4837-47. doi: 10.1113/JP271754

Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, et al. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol Cancer. 2022 Jul 14;21(1):144. doi: 10.1186/s12943-022-01616-7

Kahn M. Wnt signaling in stem cells and cancer stem cells: A tale of two coactivators. Prog Mol Biol Transl Sci. 2018 Jan 1;153:209-44. doi: 10.1016/bs.pmbts.2017.11.007

Makena MR, Ranjan A, Thirumala V, Reddy AP. Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochim Biophys Acta Mol Basis Dis. 2020 Apr 1;1866(4):165339. doi: 10.1016/j.bbadis.2018.11.015

Mahomoodally MF, Lobine D, Picot-Allain MC, Sadeer N, Jugreet S, Zengin G. Conventional and non-conventional targets of natural products in the management of diabetes mellitus and associated complications. Curr Med Chem. 2021 Jul 1;28(23):4638-69. doi: 10.21 74/0929867327666201102120120

Jiang YL, Liu ZP. Natural products as anti-invasive and anti-metastatic agents. Curr Med Chem. 2011 Feb 1;18(6):808-29. doi: 10.2174/092986711794927711

Wang N, Tan HY, Li L, Yuen MF, Feng Y. Berberine and coptidis rhizoma as potential anticancer agents: Recent updates and future perspectives. J Ethnopharmacol. 2015 Dec 24;176:35-48. doi: 10.1016/j.jep.2015.10.028

Almatroodi SA, Alsahli MA, Rahmani AH. Berberine: An important emphasis on its anticancer effects through modulation of various cell signaling pathways. Molecules. 2022 Sep 10;27(18):5889. doi: 10.3390/molecules27185889

Bandyopadhyay D, Gonzalez F. Anti-cancer agents from natural sources. In: Promising Drug Molecules of Natural Origin. New Jersey: Apple Academic Press; 2020 Nov 4. p. 83-162.

Kwon S, Chan AT. Extracting the benefits of berberine for colorectal cancer. Lancet Gastroenterol Hepatol. 2020 Mar 1;5(3):231-3. doi: 10.1016/S2468-1253(19)30430-3

Bansod S, Saifi MA, Godugu C. Molecular updates on berberine in liver diseases: Bench to bedside. Phytother Res. 2021 Oct;35(10):5459-76. doi: 10.1002/ptr.7181

Ruan H, Zhan YY, Hou J, Xu B, Chen B, Tian Y, et al. Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells. Oncogene. 2017 Dec;36(50):6906-18. doi: 10.1038/onc.2017.296

Alzamora R, O’Mahony F, Ko WH, Yip TW, Carter D, Irnaten M, et al. Berberine reduces cAMP-induced chloride secretion in T84 human colonic carcinoma cells through inhibition of basolateral KCNQ1 channels. Front Physiol. 2011 Jun 30;2:33. doi: 10.3389/ fphys.2011.00033

Conca F, Bayburtlu DK, Vismara M, Surdo NC, Tavoni A, Nogara L, et al. Phosphatases control the duration and range of cAMP/PKA microdomains. bioRxiv. 2024 Jun 05. doi: 10.1101/2024.06.04.597457

Li-Weber M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev. 2009;35:57-68. doi: 10.1016/j.ctrv.2008.09.005

Wu JY, Tsai KW, Li YZ, Chang YS, Lai YC, Laio YH, et al. Anti-bladder-tumor effect of baicalein from Scutellaria baicalensis georgi and its application in vivo. Evid Based Complement Altern Med. 2013;2013:579751. doi: 10.1155/2013/579751

Guo Z, Hu X, Xing Z, Xing R, Lv R, Cheng X, et al. Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/ mTOR pathway. Mol Cell. 2015;406:111-9. doi: 10.1007/s11010-015- 2429-8

Peng Y, Guo C, Yang Y, Li F, Zhang Y, Jiang B, et al. Baicalein induces apoptosis of human cervical cancer HeLa cells in vitro. Mol Med Rep. 2015;11:2129-34. doi: 10.3892/mmr.2014.2885

Chandrashekar N, Selvamani A, Subramanian R, Pandi A, Thiruvengadam D. Baicalein inhibits pulmonary carcinogenesis-associated inflammation and interferes with COX-2, MMP-2 and MMP-9 expressions in vivo. Toxicol Appl Pharmacol. 2012;261:10-21. doi: 10.1016/j.taap.2012.02.004

Kim DH, Hossain MA, Kang YJ, Jang JY, Lee YJ, Im E, et al. Baicalein, an active component of Scutellaria baicalensis Georgi, induces apoptosis in human colon cancer cells and prevents AOM/ DSS-induced colon cancer in mice. Int J Oncol. 2013;43:1652-8. doi: 10.3892/mmr.2012.1085

Kim SJ, Kim HJ, Kim HR, Lee SH, Cho SD, Choi CS, et al. Antitumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Mol Med Rep. 2012;6:1443-9. doi: 10.3892/mmr.2012.1085

Wang CZ, Zhang CF, Chen L, Anderson S, Lu F, Yuan CS. Colon cancer chemo preventive effects of baicalein, an active enteric microbiome metabolite from baicalin. Int J Oncol. 2015;47:1749-58. doi: 10.3892/ ijo.2015.3173

Rui X, Yan XI, Zhang K. Baicalein inhibits the migration and invasion of colorectal cancer cells via suppression of the AKT signaling pathway. Oncol Lett. 2016;11:685-8. doi: 10.3892/ol.2015.3935

Huang WS, Kuo YH, Chin CC, Wang JY, Yu HR, Sheen JM, et al. Proteomic analysis of the effects of baicalein on colorectal cancer cells. Proteomics. 2012;12:810-9. doi: 10.1002/pmic.201100270

Chen K, Zhang S, Ji Y, Li J, An P, Ren H, et al. Baicalein inhibits the invasion and metastatic capabilities of hepatocellular carcinoma cells via down-regulation of the ERK pathway. PLoS One. 2013;8:e72927. doi: 10.1371/journal.pone.0072927

Wang L, Ling Y, Chen Y, Li CL, Feng F, You QD, et al. Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells. Cancer Lett. 2010 Nov 1;297(1):42-8. doi: 10.1016/j.canlet.2010.04.022

Zhang Z, Lv J, Lei X, Li S, Zhang Y, Meng L, et al. Baicalein reduces the invasion of glioma cells via reducing the activity of p38 signaling pathway. PLoS One. 2014;9:e90318. doi: 10.1371/journal. pone.0090318

Zhang Y, Song L, Cai L, Wei R, Hu H, Jin W. Effects of baicalein on apoptosis, cell cycle arrest, migration and invasion of osteosarcoma cells. Food Chem Toxicol. 2013;53:325-33. doi: 10.1016/j.fct.2012.12.019

Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S, et al. Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediate oncogenic Ras-induced premature senescence. Mol Cell Biol. 2002;22:3389-403. doi: 10.1128/MCB.22.10.3389-3403.2002

Kwong J, Hong L, Liao R, Deng Q, Han J, Sun P. p38alpha andp38gamma mediate oncogenic Ras-induced senescence through differential mechanisms. J Biol Chem. 2009;284:11237-46. doi: 10.1074/jbc.M808327200

Ye J, Huang X, Hsueh EC, Zhang Q, Ma C, Zhang Y, et al. Human regulatory T cells induce T-lymphocyte senescence. Blood. 2012;120:2021-31. doi: 10.1182/blood-2012-03-416040

Ye J, Ma C, Hsueh EC, Eickhoff CS, Zhang Y, Varvares MA, et al. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immune senescence. J Immunol. 2013;190:2403-14. doi: 10.4049/jimmunol.1202369

Dou J, Wang Z, Ma L, Peng B, Mao K, Li C, et al. Baicalein and baicalin inhibit colon cancer using two distinct fashions of apoptosis and senescence. Oncotarget. 2018;9:20089-102. doi: 10.18632/ oncotarget.24015

Visconti R, Della Monica R, Grieco D. Cell cycle checkpoint in cancer: A therapeutically targetable double-edged sword. J Exp Clin Cancer Res. 2016;35(1):153. doi: 10.1186/s13046-016-0433-9

Chen HJ, Gu YF, Chen YG, Zhang SP, Zhu P, Lin Q, et al. Effects of baicalin on the apoptosis and cell cycle of colorectal cancer cells in orthotopic transplantation mice model with mismatch repair gene deficient. Chin J Dig Surg. 2013;12(6):435-9. (Chinese). doi: 10.1007/ s00384-012-1562-z

Rais J, Khan H, Arshad M. The role of phytochemicals in cancer prevention: A review with emphasis on baicalein, fisetin, and biochanin A. Curr Top Med Chem. 2023 May 1;23(12):1123-35. doi: 10.2174/1568026623666230516161827

Yu Y, Pei M, Li L. Baicalin induces apoptosis in hepatic cancer cells in vitro and suppresses tumor growth in vivo. Int J Clin Exp Med. 2015;8(6):8958-67.

Cianciosi D, Forbes-Hernandez T, Diaz YA, Elexpuru-Zabaleta M, Quiles JL, Battino M, et al. Manuka honey’s anti-metastatic impact on colon cancer stem-like cells: unveiling its effects on epithelial-mesenchymal transition, angiogenesis and telomere length. Food Funct. 2024;15(13):7200-13. doi: 10.1039/D4FO00943F

Yue YZ, Xie J, Yan S. Baicalin: A prominent therapeutic agent against colorectal cancer. Tradit Med Res. 2023 Apr 29;8(3):62-71. doi: 10.53388/TMR20220901001

Yin L, Jiang LP, Shen QS, Xiong QX, Zhuo X, Zhang LL, et al. NCAPH plays important roles in human colon cancer. Cell Death Dis. 2017;8:e2680. doi: 10.1038/cddis.2017.88

Touchaei AZ, Vahidi S, Samadani AA. Decoding the interaction between miR-19a and CBX7 focusing on the implications for tumor suppression in cancer therapy. Med Oncol. 2023 Dec 19;41(1):21. doi: 10.1007/s12032-023-02251-y

Su Y, Liu L, Lin C, Deng D, Li Y, Huang M, et al. Enhancing cancer therapy: Advanced Nano vehicle delivery systems for oridonin. Front Pharmacol. 2024 Dec 3;15:1476739. doi: 10.3389/fphar.2024.1476739

Chen F, Liao J, Wu P, Cheng L, Ma Y, Zhang L, et al. Oridonin inhibits the occurrence and development of colorectal cancer by reversing the Warburg effect via reducing PKM2 dimer formation and preventing its entry into the nucleus. Eur J Pharmacol. 2023 Sep 5;954:175856. doi: 10.1016/j.ejphar.2023.175856

Bu H, Liu D, Zhang G, Chen L, Song Z. AMPK/mTOR/ULK1 axis-mediated pathway participates in apoptosis and autophagy induction by oridonin in colon cancer DLD-1 Cells. Onco Targets Ther. 2020;13:8533-45. doi: 10.2147/OTT.S262022

Zhang T, Liu H, Zhao L, Zhang Y, Deng Y, He Y. Advancements in cellular senescence-based therapeutic approaches for colorectal cancer: A comparative study of Chinese and western medications. J Chin Pharm Sci. 2024 May 1;33(5):8533-45.

Wang Y, Lv H, Dai C, Wang X, Yin Y, Chen Z. Oridonin dose-dependently modulates the cell senescence and apoptosis of gastric cancer cells. Evid Based Complement Alternat Med. 2021;2021:5023536. doi: 10.1155/2021/5023536

Yao J, Liu L, Sun Q, Shen X. Direct cellular targets and anticancer mechanisms of the natural product oridonin. MedComm Fut Med. 2023;2:e35. doi: 10.1002/mef2.35

Zhou F, Gao H, Shang L, Li J, Zhang M, Wang S, et al. Oridonin promotes endoplasmic reticulum stress via TP53-repressed TCF4 transactivation in colorectal cancer. J Exp Clin Cancer Res. 2023 Jun 19;42(1):150. doi: 10.1186/s13046-023-02702-4

Islam MR, Akash S, Rahman MM, Nowrin FT, Akter T, Shohag S, et al. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chem Biol Interact. 2022 Dec 1;368:110170. doi: 10.1016/j.cbi.2022.110170

Ali MA, Khan N, Ali A, Akram H, Zafar N, Imran K, et al. Oridonin from Rabdosia rubescens: An emerging potential in cancer therapy-A comprehensive review. Food Sci Nutr. 2024 May;12(5): 3046-67. doi: 10.1002/fsn3.3986

Malavika C, Jeyashanthi N. Novel Approach in Detecting Colon Cancer Using DCNN: A Systematic Study. Available from: https:// journalcra.com/article/novel-approach-detecting-colon-cancer-using-dcnn-systematic-study

Pan B, Xia Y, Gao Z, Zhao G, Wang L, Fang S, et al. Cinnamomi Ramulus inhibits the growth of colon cancer cells via Akt/ERK signaling pathways. Chin Med. 2022;17:36. doi: 10.1186/s13020-022- 00588-6

Kordas C, Li J, Ferrer K, Shan Jin Y, Manrique N, Seo Kang M, et al. Selective induction of apoptosis by aqueous extract of Chinese medicinal herbs Scutellaria barbata and Oldenlandia diffusa in HCT 116 colon cancer cells and CCD 841 CoN colon epithelial cells. Cancer Res. 2021 July 1;81:1926. doi: 10.1158/1538-7445.AM2021-1926

Deng S, Hu B, An HM, Du Q, Xu L, Shen KP, et al. Teng-Long-Bu- Zhong-Tang, a Chinese herbal formula, enhances anticancer effects of 5-Fluorouracil in CT26 colon carcinoma. BMC Complement Altern Med. 2013;13:128. doi: 10.1186/1472-6882-13-128

Graham A, Monk D. A systemised literature review into the benefits of introducing the advanced clinical practitioner role to palliative care patients. Int J Adv Pract. 2024 Jul 24;2(3):144-8. doi: 10.12968/ ijap.2023.0049

Published

07-04-2025

How to Cite

SURUTHI RAMAMOORTHY, et al. “MOLECULAR MECHANISM AND THERAPEUTIC POTENTIAL OF BERBERINE, BAICALEIN, ORIDONIN IN THE TREATMENT OF COLORECTAL CANCER – A REVIEW”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 4, Apr. 2025, pp. 31-43, doi:10.22159/ajpcr.2025v18i4.54115.

Issue

Section

Review Article(s)