NOVEL PRE-CLINICAL EVIDENCE OF CENTELLA ASIATICA AS CARDIOPROTECTIVE AGENT FOR CARDIOMYOCYTES IN AZITHROMYCIN-INDUCED RATS: A HISTOPATHOLOGICAL PERSPECTIVE
DOI:
https://doi.org/10.22159/ajpcr.2025v18i5.54123Keywords:
Centella asiatica, cardioprotective, cardiomyocytes, azithromycin, cardiotoxicityAbstract
Objectives: Azithromycin, a macrolide class of antibiotics, is widely used as a first-line and prophylactic treatment during the COVID-19 pandemic. Despite its therapeutic effects, azithromycin has life-threatening side effects related to the cardiovascular system such as QT-interval prolongation, ventricular arrhythmias, and sudden death. At present, antioxidant agents are needed as cardioprotective agents for cardiac cells to protect against oxidative stress induced by azithromycin. Centella asiatica is one of the natural ingredients currently known to have antioxidant effects. This study aims to evaluate the cardioprotective potential of C. asiatica against azithromycin-induced cardiotoxicity through histopathological examination using routine H and E staining.
Methods: This in vivo experimental study involved four groups of Wistar rats treated orally every day for 14 days: K1 (control group), K2 (azithromycin 15 mg/kg body weight [BW]), K3 (azithromycin 15 mg/kg BW+C. asiatica extract 500 mg), and K4 (C. asiatica extract 500 mg). Histopathological staining was used to evaluate myocardial interstitial edema, inflammatory cells, and venous dilatation and congestion. Statistical analyses were performed to evaluate significance.
Results: Histopathological results showed significant improvement in myocardial interstitial edema, inflammatory cells, and dilation and congestion of veins in the group treated with C. asiatica following azithromycin induction. A statistically significant difference exists among all groups (p<0.001; Kruskal-Wallis). Statistically significant differences exist across the groups (K1 vs. K2, K1 vs. K3, K2 vs. K3, K2 vs. K4, K3 vs. K4) (p<0.001; Mann–Whitney). No statistically significant difference exists between K3 and K4 for inflammatory cell parameters and venous dilatation and congestion (p>0.05), suggesting that the preventive effect of C. asiatica is nearly equivalent to normal levels.
Conclusion: These findings demonstrate the efficacy of C. asiatica as a cardioprotective agent against azithromycin-induced cardiotoxicity.
Downloads
References
Yossadania A, Hayati Z, Harapan H, Saputra I, Mudatsir, Diah M, et al. Quantity of antibiotic use and its association with clinical outcomes in COVID-19 patients: A snapshot from a provincial referral hospital in Indonesia. Narra J. 2023;3(3):e272. doi: 10.52225/narra. v3i3.272, PMID 38450336
Sultana J, Cutroneo PM, Crisafulli S, Puglisi G, Caramori G, Trifirò G. Azithromycin in COVID-19 patients: Pharmacological mechanism, clinical evidence and prescribing guidelines. Drug Saf. 2020;43(8):691-8. doi: 10.1007/s40264-020-00976-7, PMID 32696429
Hong W, Park YK, Kim BO, Park SK, Shin J, Jang SP, et al. Use of combined treatment of 3rd-generation cephalosporin, azithromycin and antiviral agents on moderate SARs-CoV-2 patients in South Korea: A retrospective cohort study. PLoS One. 2022;17(5):e0267645. doi: 10.1371/journal.pone.0267645, PMID 35507600
Assimon MM, Pun PH, Wang L, Al-Khatib SM, Brookhart MA, Weber DJ, et al. Azithromycin use increases the risk of sudden cardiac death in patients with hemodialysis-dependent kidney failure. Kidney Int. 2022;102(4):894-903. doi: 10.1016/j.kint.2022.05.024, PMID 35752324
Rahmania TA, Harahap Y, Sandy K. Azithromycin and oseltamivir quantification method developed and validated using liquid chromatography-tandem mass spectrometry in dried blood spot. Int J Appl Pharm. 2024;16:182-7.
Atli O, Ilgin S, Altuntas H, Burukoglu D. Evaluation of azithromycin induced cardiotoxicity in rats. Int J Clin Exp Med. 2015;8(3):3681-90. PMID 26064263
Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med. 2019;51(12):1-13. doi: 10.1038/s12276-019-0355-7, PMID 31857574
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909-50. doi: 10.1152/physrev.00026.2013, PMID 24987008
Richardson AG, Schadt EE. The role of macromolecular damage in aging and age-related disease. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S28-32. doi: 10.1093/gerona/glu056, PMID 24833583
El-Shitany NA, El-Desoky K. Protective effects of carvedilol and vitamin C against azithromycin-induced cardiotoxicity in rats via
decreasing ROS, IL1-β, and TNF-α production and inhibiting NF-κB and caspase-3 expression. Oxid Med Cell Longev. 2016;2016(1):1874762. doi: 10.1155/2016/1874762, PMID 27274777
Bansal K, Bhati H, Vanshita, Bajpai M. Recent insights into therapeutic potential and nanostructured carrier systems of Centella asiatica: An evidence-based review. Pharmacol Res Mod Chin Med. 2024;10:100403.
Bunaim MK, Kamisah Y, Mohd Mustazil MN, Fadhlullah Zuhair JS, Juliana AH, Muhammad N. Centella asiatica (L.) Urb. Prevents hypertension and protects the heart in chronic nitric oxide deficiency rat model. Front Pharmacol. 2021;12:742562. doi: 10.3389/ fphar.2021.742562, PMID 34925007
Dai Y, Wang Z, Quan M, Lv Y, Li Y, Xin HB, et al. Asiatic acid protests against myocardial ischemia/reperfusion injury via modulation of glycometabolism in rat cardiomyocyte. Drug Des Dev Ther. 2018;12:3573-82. doi: 10.2147/DDDT.S175116, PMID 30498333
Razali NN, Ng CT, Fong LY. Cardiovascular protective effects of Centella asiatica and its triterpenes: A review. Planta Med. 2019;85(16):1203-15. doi: 10.1055/a-1008-6138, PMID 31539918
Muchtaromah B, Firdaus AM, Ansori AN, Duhita MR, Minarno EB, Hayati A, et al. Effect of pegagan (Centella asiatica) nanoparticle coated with chitosan on the cytokine profile of chronic diabetic mice. Narra J. 2024;4(1):e697. doi: 10.52225/narra.v4i1.697, PMID 38798839
Kasinathan ID, Uma S, Elumalai K, Manivannan K, Ramasamy M. Traditionally used medicinal plants for wound healing in Thiruvallur district, Tamil Nadu, India. Int J Curr Pharm Res. 2024;16:1-6.
WHO Solidarity Trial Consortium, Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, Sathiyamoorthy V, et al. Repurposed antiviral drugs for Covid-19 - Interim WHO solidarity trial results. N Engl J Med. 2021;384(6):497-511. doi: 10.1056/NEJMoa2023184, PMID 33264556
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. RETRACTED: Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. doi: 10.1016/j. ijantimicag.2020.105949, PMID 32205204
Kim YS, Lee SY, Yoon JW, Kim D, Yu S, Kim JS, et al. Cardiotoxicity induced by the combination therapy of chloroquine and azithromycin in human embryonic stem cell-derived cardiomyocytes. BMB Rep. 2020;53(10):545-50. doi: 10.5483/BMBRep.2020.53.10.165, PMID 32958120
Mégarbane B, Scherrmann JM. Hydroxychloroquine and azithromycin to treat patients with COVID-19: Both friends and foes? J Clin Pharmacol. 2020;60(7):808-14. doi: 10.1002/jcph.1646, PMID 32434282
Hajimirzaei N, Khalili NP, Boroumand B, Safari F, Pourhosseini A, Judi-Chelan R, et al. Comparative study of the effect of macrolide antibiotics erythromycin, clarithromycin, and azithromycin on the ERG1 gene expression in H9c2 cardiomyoblast cells. Drug Res (Stuttg). 2020;70(8):341-7. doi: 10.1055/a-1185-8762, PMID 32559772
Wolfes J, Kirchner L, Doldi F, Wegner F, Rath B, Eckardt L, et al. Electrophysiological profile of different antiviral therapies in a rabbit whole-heart model. Cardiovasc Toxicol. 2024;24(7):656-66. doi: 10.1007/s12012-024-09872-3, PMID 38851664
Frommeyer G, Eckardt L. Drug-induced proarrhythmia: Risk factors and electrophysiological mechanisms. Nat Rev Cardiol. 2016;13(1):36-47. doi: 10.1038/nrcardio.2015.110, PMID 26194552
Yang Z, Prinsen JK, Bersell KR, Shen W, Yermalitskaya L, Sidorova T, et al. Azithromycin causes a novel proarrhythmic syndrome. Circ Arrhythm Electrophysiol. 2017;10(4):e003560. doi: 10.1161/ CIRCEP.115.003560, PMID 28408648
Kashef SM, Elswaidy NR. The possible role of allicin in ameliorating azithromycin induced cardiotoxicity in adult male albino rat: A histological and immunohistochemical study. Egypt J Histol. 2021;45:863-74. doi: 10.21608/ejh.2021.72878.1465
Salimi A, Eybagi S, Seydi E, Naserzadeh P, Kazerouni NP, Pourahmad J. Toxicity of macrolide antibiotics on isolated heart mitochondria: A justification for their cardiotoxic adverse effect. Xenobiotica. 2016;46(1):82-93. doi: 10.3109/00498254.2015.1046975, PMID 26068526
Rai M, Sinha A, Roy S. A review on the chemical-induced experimental model of cardiotoxicity. Int J Pharm Pharm Sci. 2024;16:1-11. doi: 10.22159/ijpps.2024v16i7.51028
Tait SW, Green DR. Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621-32. doi: 10.1038/nrm2952, PMID 20683470
Birkinshaw RW, Czabotar PE. The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Semin Cell Dev Biol. 2017;72:152-62. doi: 10.1016/j.semcdb.2017.04.001, PMID 28396106
Zhazykbayeva S, Pabel S, Mügge A, Sossalla S, Hamdani N. The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases. Biophys Rev. 2020;12(4):947-68. doi: 10.1007/s12551-020-00742-0, PMID 32691301
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016(1):1245049. doi: 10.1155/2016/1245049, PMID 27478531
Bilginoglu A, Aydın D, Ozsoy S, Aygün H. Protective effect of melatonin on adriamycin-induced cardiotoxicity in rats. Turk Kardiyol Dern Ars. 2014;42(3):265-73.
Gao Y, Chu M, Hong J, Shang J, Xu D. Hypoxia induces cardiac fibroblast proliferation and phenotypic switch: A role for caveolae and caveolin-1/PTEN mediated pathway. J Thorac Dis. 2014;6(10):1458-68. doi: 10.3978/j.issn.2072-1439.2014.08.31, PMID 25364523
Gava FN, Da Silva SN, Rosa FA, Ortiz EM, Rodrigues BC, Bandarra MB, et al. Correlation between systolic function and presence of myofibroblasts in doxorubicin-induced cardiomyopathy. Cien Rural. 2016;46(9):1642-8. doi: 10.1590/0103-8478cr20151062
Wang L, Yuan T, Du G, Zhao Q, Ma L, Zhu J. The impact of 1,25-dihydroxyvitamin D3 on the expression of connective tissue growth factor and transforming growth factor-β1 in the myocardium of rats with diabetes. Diabetes Res Clin Pract. 2014;104(2):226-33. doi: 10.1016/j.diabres.2014.01.031, PMID 24613393
Gaspard GJ, MacLean J, Rioux D, Pasumarthi KB. A novel β-adrenergic response element regulates both basal and agonist-induced expression of cyclin-dependent kinase 1 gene in cardiac fibroblasts. Am J Physiol Cell Physiol. 2014;306(6):C540-50. doi: 10.1152/ajpcell.00206.2013, PMID 24477232
Gnanapragasam A, Yogeeta S, Subhashini R, Ebenezar KK, Sathish V, Devaki T. Adriamycin induced myocardial failure in rats: Protective role of Centella asiatica. Mol Cell Biochem. 2007;294(1-2):55-63. doi: 10.1007/s11010-006-9245-0, PMID 16786185
Yi C, Song M, Sun L, Si L, Yu D, Li B, et al. Asiatic acid alleviates myocardial ischemia-reperfusion injury by inhibiting the ROS-mediated mitochondria-dependent apoptosis pathway. Oxid Med Cell Longev. 2022;2022:3267450. doi: 10.1155/2022/3267450, PMID 35198095
Qiu F, Yuan Y, Luo W, Gong YS, Zhang ZM, Liu ZM, et al. Asiatic acid alleviates ischemic myocardial injury in mice by modulating mitophagy- and glycophagy-based energy metabolism. Acta Pharmacol Sin. 2022;43(6):1395-407. doi: 10.1038/s41401-021-00763-9, PMID 34522006
Loganathan C, Thayumanavan P. Asiatic acid prevents the quinolinic acid-induced oxidative stress and cognitive impairment. Metab Brain Dis. 2018;33(1):151-9. doi: 10.1007/s11011-017-0143-9, PMID 29086235
Huang W, Gao F, Hu F, Huang J, Wang M, Xu P, et al. Asiatic acid prevents retinal ganglion cell apoptosis in a rat model of glaucoma. Front Neurosci. 2018;12:489. doi: 10.3389/fnins.2018.00489, PMID 30079010
Dong SH, Liu YW, Wei F, Tan HZ, Han ZD. Asiatic acid ameliorates pulmonary fibrosis induced by bleomycin (BLM) via suppressing pro-fibrotic and inflammatory signaling pathways. Biomed Pharmacother. 2017;89:1297-309. doi: 10.1016/j.biopha.2017.03.005, PMID 28320097
Pragada RR, Veeravalli KK, Chowdary KP, Routhu KV. Cardioprotective activity of Hydrocotyle asiatica L. in ischemia-reperfusion induced myocardial infarction in rats. J Ethnopharmacol. 2004;93(1):105-8. doi: 10.1016/j.jep.2004.03.025, PMID 15182913
Lv J, Sharma A, Zhang T, Wu Y, Ding X. Pharmacological review on Asiatic acid and its derivatives: A potential compound. SLAS Technol. 2018;23(2):111-27. doi: 10.1177/2472630317751840, PMID 29361877
Cotellese R, Hu S, Belcaro G, Ledda A, Feragalli B, Dugall M, et al. Centella asiatica (Centellicum®) facilitates the regular healing of surgical scars in subjects at high risk of keloids. Minerva Chir. 2018;73(2):151-6. doi: 10.23736/S0026-4733.18.07666-6, PMID 29623705
Astiani R, Sadikin M, Eff AR, Firdayani, Suyatna FD. In silico identification testing of triterpene saponines on Centella asiatica on inhibitor renin activity antihypertensive. Int J Appl Pharm. 2022;14:1-4. doi: 10.22159/ijap.2022.v14s2.44737
Purwani E, Putri AM, Sofyan A. The effect of a combination of black tea with pegagan leaf tea (Centella asiatica) on PH, total acid, and flavonoids. Int J Appl Pharm. 2024;16:66-70. doi: 10.22159/ ijap.2024v16s5.52484
Ibibia ET, Peter Obaloluwa A, Olasunkanmi AM, Ijeoma MA, Olugbemiga OS. Total phenolic, flavonoid and mineral contents of the methanolic leaf extract of Parinari curatellifolia planch. Ex BENTH. Int J Chem Res. 2023;7:13-8. doi: 10.22159/ijcr.2023v7i2.218
Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res. 2009;84(1):91-9. doi: 10.1093/cvr/cvp181, PMID 19493956
Hashim P, Sidek H, Helan MH, Sabery A, Palanisamy UD, Ilham M. Triterpene composition and bioactivities of Centella asiatica. Molecules. 2011;16(2):1310-22. doi: 10.3390/molecules16021310, PMID 21278681
Sawatdee S, Choochuay K, Chanthorn W, Srichana T. Evaluation of the topical spray containing Centella asiatica extract and its efficacy on excision wounds in rats. Acta Pharm. 2016;66(2):233-44. doi: 10.1515/ acph-2016-0018, PMID 27279066
Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, et al. Therapeutic potential of Centella asiatica and its triterpenes: A review. Front Pharmacol. 2020;11:568032. doi: 10.3389/fphar.2020.568032, PMID 33013406
Si L, Xu J, Yi C, Xu X, Wang F, Gu W, et al. Asiatic acid attenuates cardiac hypertrophy by blocking transforming growth factor-β1- mediated hypertrophic signaling in vitro and in vivo. Int J Mol Med. 2014;34(2):499-506. doi: 10.3892/ijmm.2014.1781, PMID 24827470
Abd El-kader M. Evaluation of azithromycin induced cardiotoxicity in male albino rats and the possible protective role of Nigella sativa oil. Egypt J Histol. 2019;43(2):465-76. doi: 10.21608/ejh.2019.13772.1138
Published
How to Cite
Issue
Section
Copyright (c) 2025 Sake Juli Martina, Azzahra Wiana Kartika Siregar, Dwi Rita Anggraini

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.