ADVANCED APPROACHES OF POLYSACCHARIDE FUNCTIONALIZED SILVER NANOPARTICLES IN DENTAL APPLICATIONS: A CRITICAL REVIEW
DOI:
https://doi.org/10.22159/ajpcr.2025v18i4.54126Keywords:
Silver Nanoparticles, Polysaccharide, Dental application, antimicrobial, SynthesisAbstract
Silver nanoparticles (AgNPs) have become an integral part of modern dentistry as they are highly antimicrobial. Recent studies involving green synthesis of AgNPs from polysaccharides have opened up new prospects for enhancing the efficiency and safety of silver nanoparticles. This review aims to explore novel directions with silver nanoparticle-polysaccharide systems through their synthesis, engineering, characterization, and dental applications. The scientific articles published between 2012 and 2024 in different journals were retrieved from PubMed, Scopus, and Google Scholar databases to complete the current review taking the recent articles. The diagrams were prepared manually using online software. This study underscores the potential of polymer-conjugated AgNPs as next-generation antimicrobial agents, offering an additive approach for combating resistant microbial infections. Polysaccharide matrices stabilize AgNPs, optimizing their bioavailability and targeted biofilm disruption. Comparative studies show that AgNP-conjugated systems surpass unmodified counterparts in Streptococcus mutans biofilm elimination and prevention of enamel demineralization through prolonged ion release and augmented mucosal adhesion. Integrating polysaccharide-functionalized AgNPs in dental applications represents a significant advancement, offering enhanced antimicrobial efficacy while mitigating toxicity concerns. Comparative analyses highlight superior antimicrobial activity against Streptococcus mutans compared to unmodified AgNPs. Therefore, future research should focus on exploring natural polysaccharides for standardizing synthesis protocols of polysaccharide-AgNPs hybrids to ensure reproducibility and safety for preventing oral infections and promoting oral health, underscoring the need for rigorous clinical trials to validate their long-term efficacy and safety.
Downloads
References
Ahmed O, Sibuyi NR, Fadaka AO, Madiehe MA, Maboza E, Meyer M, et al. Plant extract-synthesized silver nanoparticles for application in dental therapy. Pharmaceutics. 2022;14(2):380. doi: 10.3390/pharmaceutics14020380
Marimuthu A, Seenivasan R, Pachiyappan JK, Nizam I, Ganesh G. Synergy of science and tradition: A nanotechnology-driven revolution in natural medicine. Int J App Pharm. 2024;16(6):10-20. doi:10.22159/ ijap.2024v16i6.50767
Imam SS. Nanoparticles: The future of drug delivery. Int J Curr Pharm Res. 2023;15(6):8-15. doi: 10.22159/ijcpr.2023v15i6.3076
Cifuentes-Jiménez C, Bolaños-Carmona MV, Enrich-Essvein T, Rodríguez-Navarro AB, González-López S, Yamauti M, et al. Green synthesis of chitosan-and fluoride-functionalized silver nanoparticles using Camellia sinensis: Characterization and dental applications. Int J Biol Macromol. 2024;268(Pt 1):131676. doi: 10.1016/j. ijbiomac.2024.131676
Ismail E, Mabrouk M, Salem ZA, AbuBakr N, Beherei H. Evaluation of innovative polyvinyl alcohol/alginate/green palladium nanoparticles composite scaffolds: Effect on differentiated human dental pulp stem cells into osteoblasts. J Mech Behav Biomed Mater. 2023;140:105700. doi: 10.1016/j.jmbbm.2023.105700
Lboutounne H. Dental medicine nanosystems: Nanoparticles and their use in dentistry and oral health care. Int J Dent Oral Heal. 2017;3(10):150-62. doi:10.25141/2471-657x-2017-10.0150
Bapat RA, Joshi CP, Bapat P, Chaubal TV, Pandurangappa R, Jnanendrappa N, et al. The use of nanoparticles as biomaterials in dentistry. Drug Discov Today. 2019;24(1):85-98. doi:10.1016/j. drudis.2018.08.012
Mallineni SK, Sakhamuri S, Kotha SL, AlAsmari AR, AlJefri GH, Almotawah FN, et al. Silver nanoparticles in dental applications: A descriptive review. Bioengineering (Basel). 2023;10(3):327. doi: 10.3390/bioengineering10030327
Pavanello L, Cortês IT, de Carvalho RD, Picolo MZ, Cavalli V, Silva LT, et al. Physicochemical and biological properties of dental materials and formulations with silica nanoparticles: A narrative review. Dent Mater. 2024;40(11):1729-41. doi: 10.1016/j.dental.2024.07.028, PMID: 39117500
Almedarham RF, Al Dawood ZH, Alatiyyah FM, Akhtar S, Khan SQ, Shetty AC, et al. Flexural properties of additive manufactured resin designated for interim fixed dental prosthesis: Effect of nanoparticles, build direction, and artificial aging. Saudi Dent J. 2024;36(11):1417- 24. doi: 10.1016/j.sdentj.2024.08.001
Maher N, Mahmood A, Fareed MA, Kumar N, Rokaya D, Zafar MS. An updated review and recent advancements in carbon-based bioactive coatings for dental implant applications. J Adv Res. 2024. doi: 10.1016/j.jare.2024.07.016
Mohammed AA, Ali AH. Fabrication and characterization of mesoporous calcium silicate and silver-incorporated mesoporous calcium silicate nanoparticles with low cytotoxicity and antibacterial properties as a dental biomaterial. Results Mater. 2024;22(2):100555. doi:10.1016/j.rinma.2024.100555
Yazdanian M, Rostamzadeh P, Rahbar M, Alam M, Abbasi K, Tahmasebi E, et al. The potential application of green-synthesized metal nanoparticles in dentistry: A comprehensive review. Bioinorg Chem Appl. 2022;2022:2311910. doi: 10.1155/2022/2311910
Sharifi R, Vatani A, Sabzi A, Safaei M. A narrative review on application of metal and metal oxide nanoparticles in endodontics. Heliyon. 2024;10(15):e34673. doi:10.1016/j.heliyon.2024.e34673
Nabhan A, Taha M, Ghazaly NM. Filler loading effect of Al2O3/TiO2 nanoparticles on physical and mechanical characteristics of dental base composite (PMMA). Polym Test. 2023;117:107848. doi: 10.1016/j. polymertesting.2022.107848
Mobarak MH, Hossain N, Hossain A. Advances of graphene nanoparticles in dental implant applications-A review. Appl Surf Sci Adv. 2023;18:100470. doi: 10.1016/j.apsadv.2023.100470
Larissa P, Gambrill B, de Carvalho RD. Development, characterization and antimicrobial activity of multilayer silica nanoparticles with chlorhexidine incorporated into dental composites. Dent Mater. 2023;39(5):469-77. doi: 10.1016/j.dental.2023.03.005
Jairam LS, Chandrashekar A, Niranjana Prabhu T, Kotha SB, Girish MS, Devraj IM, et al. A review on biomedical and dental applications of cerium oxide nanoparticles -Unearthing the potential of this rare earth metal. J Rare Earths. 2023;41(11):1645-1661. doi: 10.1016/j.jre.2023.04.009
Hossain N, Mobarak MH, Hossain A, Khan F, Mim JJ, Chowdhury MA. Advances of plant and biomass extracted zirconium nanoparticles in dental implant application. Heliyon. 2023;9(5):e15973. doi: 10.1016/j. heliyon.2023.e15973
Chowdhury MA, Hossain N, Mostofa MG, Mia MR, Tushar M, Rana MM, et al. Green synthesis and characterization of zirconium nanoparticlefor dental implant applications. Heliyon. 2023;9(1):e12711. doi: 10.1016/j.heliyon.2022.e12711
Naguib GH, Nassar HM, Hamed MT. Antimicrobial properties of dental cements modified with zein-coated magnesium oxide nanoparticles. Bioact Mater. 2022;8:49-56. doi: 10.1016/j.bioactmat.2021.06.011
Xia Y, Chen H, Zhang F. Gold nanoparticles in injectable calcium phosphate cement enhance osteogenic differentiation of human dental pulp stem cells. Nanomedicine. 2018;14(1):35-45. doi: 10.1016/j. nano.2017.08.014
Wang M, Wang L. Plant polyphenols mediated synthesis of gold nanoparticles for pain management in nursing care for dental tissue implantation applications. J Drug Deliv Sci Technol. 2020;58:101753. doi: 10.1016/j.jddst.2020.101753
Sun J, Petersen EJ, Watson SS, Sims CM, Kassman A, Frukhtbeyn S, et al. Biophysical characterization of functionalized titania nanoparticles and their application in dental adhesives. Acta Biomater. 2017;53:585- 97. doi: 10.1016/j.actbio.2017.01.084
Moradpoor H, Safaei M, Mozaffari HR, Sharifi R, Imani MM, Golshah A, et al. An overview of recent progress in dental applications of zinc oxide nanoparticles. RSC Adv. 2021;11(34):21189-206. doi: 10.1039/d0ra10789a
Fernández-Arias M, Boutinguiza M, Del Val J, Covarrubias C, Bastias F, Gómez L, et al. Copper nanoparticles obtained by laser ablation in liquids as bactericidal agent for dental applications. Appl Surf Sci. 2020;507:145032. doi: 10.1016/j.apsusc.2019.145032
Lima FV, Mendes C, Zanetti-Ramos BG, Nandi JK, Cardoso SG, Bernardon JK, et al. Carbamide peroxide nanoparticles for dental whitening application: Characterization, stability and in vivo/in situ evaluation. Colloids Surfaces B Biointerfaces. 2019;179:326-33. doi: 10.1016/j.colsurfb.2019.04.006
Moonesi Rad R, Alshemary AZ, Evis Z, Keskin D, Altunbaş K, Tezcaner A. Structural and biological assessment of boron doped bioactive glass nanoparticles for dental tissue applications. Ceram Int. 2018;44(8):9854-64. doi: 10.1016/j.ceramint.2018.02.23
Ajita J, Saravanan S, Selvamurugan N. Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications. Mater Sci Eng C Mater Biol Appl. 2015;53:142-9. doi: 10.1016/j.msec.2015.04.041
Xu VW, Nizami MZ, Yin IX, Yu OY, Lung CY, Chu CH. Application of copper nanoparticles in dentistry. Nanomaterials (Basel). 2022;12(5):805. doi: 10.3390/nano12050805
Jadhav K, Rajeshwari H, Deshpande S, Jagwani S, Dhamecha D, Jalalpure S, et al. Phytosynthesis of gold nanoparticles: Characterization, biocompatibility, and evaluation of its osteoinductive potential for application in implant dentistry. Mater Sci Eng C. 2018;93:664-70. doi: 10.1016/j.msec.2018.08.028
Raorane DV, Chaughule RS, Pednekar SR, Lokur A. Experimental synthesis of size-controlled TiO2 nanofillers and their possible use as composites in restorative dentistry. Saudi Dent J. 2019;31(2):194-203. doi: 10.1016/j.sdentj.2019.01.008
Ravandi R, Zeinali Heris S, Hemmati S, Aghazadeh M, Davaran S, Abdyazdani N. Effects of chitosan and TiO2 nanoparticles on the antibacterial property and ability to self-healing of cracks and retrieve mechanical characteristics of dental composites. Heliyon. 2024;10(6):e27734. doi: 10.1016/j.heliyon.2024.e27734
Hossain N, Islam MA, Chowdhury MA, Alam A. Advances of nanoparticles employment in dental implant applications. Appl Surf Sci Adv. 2022;12(9):100341. doi: 10.1016/j.apsadv.2022.10034135. Singh SP, Dubey V, Mishra A, Singh Y. Silver nanoparticles: Biomedical applications, toxicity, and safety issues. Int J Res Pharm Pharm Sci. 2017;4(2):1-10.
Thangavelu L, Adil AH, Arshad S, Devaraj E, Mallineni SK, Sajja R, et al. Antimicrobial properties of silver nitrate nanoparticle and its application in endodontics and dentistry: A review of literature. J Nanomater. 2021;2021:9132714. doi: 10.1155/2021/9132714
Ferdous Z, Nemmar A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21(7):2375. doi: 10.3390/ijms21072375
Karunakaran H, Krithikadatta J, Doble M. Local and systemic adverse effects of nanoparticles incorporated in dental materials- a critical review. Saudi Dent J. 2024;36(1):158-67. doi: 10.1016/j. sdentj.2023.08.013
Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials (Basel). 2018;8(9):681. doi: 10.3390/ nano8090681
Goel M, Sharma A, Sharma B. Recent advances in biogenic silver nanoparticles for their biomedical applications. Sustain Chem. 2023;4(1):61-94. doi: 10.3390/suschem4010007
Salas-López EK, Pierdant-Pérez M, Hernández-Sierra JF, Ruíz F, Mandeville P, Pozos-Guillén AJ. Effect of silver nanoparticle-added pit and fissure sealant in the prevention of dental caries in children. J Clin Pediatr Dent. 2017;41(1):48-52. doi: 10.17796/1053-4628-41.1.48
Afkhami F, Akbari S, Chiniforush N. Entrococcus faecalis elimination in root canals using silver nanoparticles, photodynamic therapy, diode laser, or laser-activated nanoparticles: An in vitro study. J Endod. 2017;43(2):279-82. doi: 10.1016/j.joen.2016.08.029
Niska K, Knap N, Kędzia A, Jaskiewicz M, Kamysz W, Inkielewicz- Stepniak I. Capping agent-dependent toxicity and antimicrobial activity of silver nanoparticles: An in vitro study. Concerns about potential application in dental practice. Int J Med Sci. 2016;13(10):772-82. doi: 10.7150/ijms.16011
Taher MA, Khojah E, Darwish MS, Elsherbiny EA, Elawady AA, Dawood DH. Biosynthesis of Silver Nanoparticles by Polysaccharide of Leucaena leucocephala Seeds and Their Anticancer, Antifungal Properties and as Preservative of Composite Milk Sample. J Nanomater. 2022, 2022(16). doi:10.1155/2022/7490221.
Hossain N, Chowdhury DM, Hossain A, Ahmed MS, Rana MM, Sultana S. Synthesis and characterization of Alocasia indica infused silver nanoparticles for dental implant applications. Chem Phys Impact. 2023;6:100239. doi: 10.1016/j.chphi.2023.100239
Takamiya AS, Monteiro DR, Gorup LF, Silva EA, de Camargo ER, Gomes-Filho JE, et al. Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Mater Sci Eng C Mater Biol Appl. 2021;118:111341. doi: 10.1016/j. msec.2020.111341
Alcudia A, Begines B, Rodriguez-Lejarraga P, Greyer V, Godinho VC, Pajuelo E, et al. Development of porous silver nanoparticle/ polycaprolactone/polyvinyl alcohol coatings for prophylaxis in titanium interconnected samples for dental implants. Colloid Interface Sci Commun. 2022;48(5):100621. doi: 10.1016/j.colcom.2022.100621
Al-Ansari MM, Al-Dahmash ND, Ranjitsingh AJ. Synthesis of silver nanoparticles using gum Arabic: Evaluation of its inhibitory action on Streptococcus mutans causing dental caries and endocarditis. J Infect Public Health. 2021;14(3):324-30.
Barot T, Rawtani D, Kulkarni P. Physicochemical and biological assessment of silver nanoparticles immobilized Halloysite nanotubes-based resin composite for dental applications. Heliyon. 2020;6(3):e03601. doi: 10.1016/j.heliyon.2020.e03601
Fernandez CC, Sokolonski AR, Fonseca MS, Stanisic D, Araújo DB, Azevedo V, et al. Applications of silver nanoparticles in dentistry: Advances and technological innovation. Int J Mol Sci. 2021;22(5):2485. doi: 10.3390/ijms22052485
Espinosa-Cristóbal LF, López-Ruiz N, Cabada-Tarín D, Reyes-López SY, Zaragoza-Contreras A, Constandse-Cortéz D, et al. Antiadherence and antimicrobial properties of silver nanoparticles against Streptococcus mutans on brackets and wires used for orthodontic treatments. J Nanomater. 2018;2018:9248527. doi: 10.1155/2018/9248527
Manikandan V, Velmurugan P, Park JH, Chang WS, Park YJ, Jayanthi P, et al. Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech. 2017;7(1):72. doi: 10.1007/s13205-017-0670-4
Sundeep D, Vijaya Kumar T, Rao PS, Ravikumar RV, Gopala Krishna A. Green synthesis and characterization of Ag nanoparticles from Mangifera indica leaves for dental restoration and antibacterial applications. Prog Biomater. 2017;6(1-2):57-66. doi: 10.1007/s40204- 017-0067-9
Bankura KP, Maity D, Mollick MM, Mondal D, Bhowmick B, Bain MK, et al. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr Polym. 2012;89(4):1159-65. doi: 10.1016/j.carbpol.2012.03.089
Rokhade VK, Taranath TC. Influence of physico-chemical parameters on the fabrication of silver nanoparticles using Maranta arundinacea l and its anti-microbial efficacy. Int J Pharm Pharm Sci. 2025;17(3):1-9. doi: 10.22159/ijpps.2025v17i3.28365
Dhaka A, Sharma S, Trivedi R. A review on biological synthesis of silver nanoparticles and their potential applications. Results Chem. 2023;6:101108. doi: 10.1016/j.rechem.2023.101108
Wang C, Gao X, Chen Z, Chen Y, Chen H. Preparation, characterization and application of polysaccharide-based metallic nanoparticles: A review. Polymers (Basel). 2017;9(12):689. doi: 10.3390/ polym9120689
Yang X, Wu JY. Synthetic conditions, physical properties, and antibacterial activities of silver nanoparticles with exopolysaccharides of a medicinal fungus. Materials (Basel). 2022;15(16):5620. doi: 10.3390/ma15165620
Sharma NK, Vishwakarma J, Rai S, Alomar TS, Almasoud N, Bhattarai A. Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega. 2022;7(31):27004-20. doi: 10.1021/acsomega.2c01400
Villarreal-Gómez LJ, Pérez-González GL, Bogdanchikova N, Pestryakov A, Nimaev V, Soloveva A, et al. Antimicrobial effect of electrospun nanofibers loaded with silver nanoparticles: Influence of Ag incorporation method. J Nanomater. 2021;2021:9920755. doi: 10.1155/2021/9920755
El-Naggar NE, Hussein MH, Shaaban-Dessuuki SA, Dalal SR. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci Rep. 2020;10(1):3011. doi: 10.1038/s41598-020-59945-w
Zheng S, Zhou Q, Chen C, Yang F, Cai Z, Li D, et al. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. Sci Total Environ. 2019;660:1182-90. doi: 10.1016/j.scitotenv.2019.01.067
Barclay TG, Day CM, Petrovsky N, Garg S. Review of polysaccharide particle-based functional drug delivery. Carbohydr Polym. 2019;221:94- 112. doi: 10.1016/j.carbpol.2019.05.067
Plucinski A, Lyu Z, Schmidt BV. Polysaccharide nanoparticles: From fabrication to applications. J Mater Chem B. 2021;9(35):7030-62. doi: 10.1039/d1tb00628b
Visan AI, Cristescu R. Polysaccharide-based coatings as drug delivery systems. Pharmaceutics. 2023;15(9):2227. doi: 10.3390/ pharmaceutics15092227
Martínez-Rodríguez MA, Madla-Cruz E, Urrutia-Baca VH, de la Garza-Ramos MA, González-González VA, Garza-Navarro MA. Influence of polysaccharides’ molecular structure on the antibacterial activity and cytotoxicity of green synthesized composites based on silver nanoparticles and carboxymethyl-cellulose. Nanomaterials (Basel). 2020;10(6):1164. doi: 10.3390/nano10061164
Rodrigues MC, Rolim WR, Viana MM, Souza TR, Gonçalves F, Tanaka CJ, et al. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J Dent. 2020;96:103327. doi: 10.1016/j.jdent.2020.103327
Yosri N, Khalifa SA, Guo Z, Xu B, Zou X, El-Seedi HR. Marine organisms: Pioneer natural sources of polysaccharides/proteins for green synthesis of nanoparticles and their potential applications. Int J Biol Macromol. 2022;193(PB):1767-98. doi: 10.1016/j. ijbiomac.2021.10.229
Perkasa DP, Arozal W, Suhaeri M. Potentials of alginates as capping agent for oral colon delivery of radiosynthesized silver nanoparticles: A review. Atom Indones. 2022;48(2):125-36. doi: 10.17146/ aij.2022.1082
Amasya G, Tuba Sengel-Turk C, Basak Erol H, Kaskatepe B, Oncu A, Guney-Eskiler G, et al. Rational design of a nano-antibiotic chitosan hydrogel for the bacterial infection therapy: In vitro & ex vivo assessments. Int J Pharm. 2024;665:124692. doi: 10.1016/j. ijpharm.2024.124692
Oviya P, Francis AP, Mahalaxmi B. Fabrication of hemocompatible chitosan-biogenic silver nanocomposite for biomedical applications. J Drug Deliv Sci Technol. 2023;87:104826. doi: 10.1016/j. jddst.2023.104826
Divakar DD, Jastaniyah NT, Altamimi HG, Alnakhli YO, Muzaheed,
Alkheraif AA, et al. Enhanced antimicrobial activity of naturally derived bioactive molecule chitosan conjugated silver nanoparticle against dental implant pathogens. Int J Biol Macromol. 2018;108:790- 7. doi: 10.1016/j.ijbiomac.2017.10.166
Wekwejt M, Michalska-Sionkowska M, Bartmański M, Nadolska M, Łukowicz K, Pałubicka A, et al. Influence of several biodegradable components added to pure and nanosilver-doped PMMA bone cements on its biological and mechanical properties. Mater Sci Eng C Mater Biol Appl. 2020;117:111286. doi: 10.1016/j.msec.2020.111286
Zhang J, Shachaf C. Methods of making silver nanoparticles and their applications. Oct. 3, 2023. US 11,771,628 B2.
Goia D. Preparation of highly stable concentrated dispersions of silver nanoparticles using synergistic dispersing agents. Sep. 27, 2022. US 11,453,058 B2.
Nolan RP. Methods for producing gum aerobic encapsulated metal nanoparticles. Jun. 4, 2020. US 2020 / 0171081 A1.
Charlotte AE, Min J, Micheal R. Nanoparticle-containing hydrogels. Apr. 1, 2020. EP003057617B1.
Galembeck A, Flores MAP, Dos Santos VE. Process for obtaining the product for prevention, interruption of dental caries lesions and teeth remineralization and obtained product. Oct. 4, 2018. US 2018 / 0280431 A1.
Meledandri CJ, Schwass RD. Assembly of micelle aggregates of surfactant micelles and silver nanoparticles and use as antibacterial agent. Sep. 4, 2018. US 10,064,891 B2.
Bellaire B, Narasimhan B. Antimicrobial polyanhydride nanoparticles. Jan. 6, 2015. US 8,927,024 B1.
Karandikar BM, Gibbins BL. Methods and compositions for metal nanoparticle-treated surfaces. Jan. 29, 2013. US 8,361,553 B2.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Prosun Ganguly, Moumita Chowdhury, Aniket Hazra, Swarnakamal Bag

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.