PREPARATION OF IBRUTINIB-LOADED NANOSUSPENSION: IN VITRO AND IN VIVO PHARMACOKINETIC EVALUATION FOR ENHANCED DISSOLUTION AND BIOAVAILABILITY

Authors

  • VALLABH DEULKAR Department of Pharmaceutics, GITAM School of Pharmacy, Hyderabad Campus, GITAM (Deemed to be University), Hyderabad, Telangana, India. https://orcid.org/0009-0000-1132-878X
  • PATHURI RAGHUVEER Department of Pharmaceutics, GITAM School of Pharmacy, Hyderabad Campus, GITAM (Deemed to be University), Hyderabad, Telangana, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i5.54154

Keywords:

Ibrutinib, Nanosuspension, Bioavailability, Pharmacokinetics, Dissolution, Stability

Abstract

Objectives: The objective of this study was to develop and optimize an ibrutinib (IBR) nanosuspension (NS) formulation using the wet media milling technique and to evaluate its pharmacokinetic (PK) performance in comparison with the plain drug (PD) formulation under both fed and fasted conditions.

Methods: The IBR NS was formulated using a wet nano ball milling technique (Fritsch Pulverissette 7, Germany) with stabilizers such as Tween 80, sodium lauryl sulfate, and hypromellose. The optimized formulation was further processed using spray drying. The formulation was characterized for size, potential, and polydispersity using dynamic light scattering. The Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy techniques were employed for physicochemical characterization. Saturation solubility, dissolution, and stability studies were conducted to assess the formulation’s performance. PK studies were performed on the IBR NS and PD (IBR PD) formulations in both fed and fasted conditions to evaluate key parameters such as Cmax, Tmax, half-life, area under the curve (AUC0–∞), and mean residence time.

Results: After spray drying, the IBR NS showed a notably lower particle size of 135.6 nm with a polydispersity of 0.389 and a zeta potential of −27.1 mV. The formulation showed a 3.786-fold surge in Cmax and a 2.996-fold rise in AUC0–24 h in comparison to the drug in fasting conditions. The IBR NS maintained consistent PK characteristics across fed and fasted conditions, demonstrating improved bioavailability. Saturation solubility experiments also indicated a 12.96-fold rise in solubility for the IBR NS versus to the typical medication.

Conclusion: The IBR NS formulation exhibited enhanced solubility, stability, and bioavailability compared to the PD formulation. The significant increase in PK parameters such as Cmax and AUC0–24 h underscores the potential of NS technology in proving the p.o bioavailability of poorly soluble drugs. This formulation can provide a more reliable therapeutic effect and has the potential for further clinical application in the treatment of chronic conditions.

Downloads

Download data is not yet available.

References

Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM. The global burden of cancer: Priorities for prevention. Carcinogenesis. 2010;31(1):100-10. doi: 10.1093/carcin/bgp263, PMID: 19934210

Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, et al. New approaches and procedures for cancer treatment: Current perspectives. Sage Open Med. 2021;9:20503121211034366. doi: 10.1177/20503121211034366, PMID: 34408877

Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: A current overview. Clin Exp Metastasis. 2018 Apr;35(4):309-18. doi: 10.1007/s10585- 018-9903-0. PMID: 29799080

Robinson K, Tiriveedhi V. Perplexing role of P-glycoprotein in tumor microenvironment. Front Oncol. 2020;10:265. doi: 10.3389/ fonc.2020.00265, PMID: 32195185

Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metab Dispos. 2014 Apr;42(4):623-31. doi: 10.1124/dmd.113.056176, PMID: 24492893

He C, Sun Z, Hoffman RM, Yang Z, Jiang Y, Wang L, et al. P-glycoprotein overexpression is associated with cisplatin resistance in human osteosarcoma. Anticancer Res. 2019 Apr;39(4):1711-8. doi: 10.21873/anticanres.13277, PMID: 30952710

Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020 Jul;7:193. doi: 10.3389/ fmolb.2020.00193, PMID: 32974385

Smith MR. Ibrutinib in B lymphoid malignancies. Expert Opin Pharmacother. 2015 Dec;16(12):1879-87. doi: 10.1517/14656566.2015.1067302, PMID: 26165513

Massó-Vallés D, Jauset T, Soucek L. Ibrutinib repurposing: From B-cell malignancies to solid tumors. Oncoscience. 2016 May;3(5-6):147-8. doi: 10.18632/oncoscience.310, PMID: 27489860

Shakeel F, Iqbal M, Ezzeldin E. Bioavailability enhancement and pharmacokinetic profile of an anticancer drug ibrutinib by self-nanoemulsifying drug delivery system. J Pharm Pharmacol. 2016 Jun;68(6):772-80. doi: 10.1111/jphp.12550, PMID: 27018771

Davids MS, Brown JR. Ibrutinib: A first in class covalent inhibitor of Bruton’s tyrosine kinase. Future Oncol. 2014 Jun;10(6):957-67. doi: 10.2217/fon.14.51, PMID: 24941982

Chary SS, Bhikshapathi DV, Vamsi NM, Kumar JP. Optimizing entrectinib nanosuspension: Quality by design for enhanced oral bioavailability and minimized fast-fed variability. BioNanoScience. 2024 Feb;14(4):4551-69. doi: 10.1007/s12668-024-01462-5

Rangaraj N, Pailla SR, Chowta P, Sampathi S. Fabrication of ibrutinib nanosuspension by quality by design approach: Intended for enhanced oral bioavailability and diminished fast fed variability. AAPS PharmSciTech. 2019 Aug;20(8):326. doi: 10.1208/s12249-019-1524-7, PMID: 31659558

Rangaraj N, Pailla SR, Shah S, Prajapati S, Sampathi S. QbD aided development of ibrutinib-loaded nanostructured lipid carriers aimed for lymphatic targeting: Evaluation using chylomicron flow blocking approach. Drug Deliv Transl Res. 2020 May;10(5):1476-94. doi: 10.1007/s13346-020-00803-7, PMID: 32519202

Mostafa MAH, Khojah HMJ. Nanoparticle-based delivery systems for phytochemicals in cancer therapy: molecular mechanisms, clinical evidence, and emerging trends. Drug Dev Ind Pharm. 2025 Mar:1-17. doi: 10.1080/03639045.2025.2483425, Epub ahead of print. PMID: 40116905.

Reddy KS, Bhikshapathi D, Kumar JP. Unlocking dabrafenib’s potential: A quality by design (QBD) journey to enhance permeation and oral bioavailability through nanosponge formulation. Braz J Pharm Sci. 2025;61:e24209. doi: 10.1590/s2175-97902025e24209

Kesisoglou F, Mitra A. Crystalline nanosuspensions as potential toxicology and clinical oral formulations for BCS II/IV compounds. AAPS J. 2012 Apr;14(4):677-87. doi: 10.1208/s12248-012-9383-0, PMID: 22736294

Palanati M, Bhikshapathi DV. Development, characterization and evaluation of entrectinib nanosponges loaded tablets for oral delivery. Int J Appl Pharm. 2023 Nov-Dec;15(6):269-81. doi: 10.22159/ ijap.2023v15i6.49022

Pınar SG, Canpınar H, Tan Ç, Çelebi N. A new nanosuspension prepared with wet milling method for oral delivery of highly variable drug cyclosporine A: Development, optimization and in vivo evaluation. Eur J Pharm Sci. 2022;171:106123. doi: 10.1016/j.ejps.2022.106123, PMID: 35017012

Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, et al. Understanding pharmaceutical quality by design. AAPS J. 2014 May;16(4):771-83. doi: 10.1208/s12248-014-9598-3, PMID: 24854893

Amasya G, Aksu B, Badilli U, Onay-Besikci A, Tarimci N. QbD guided early pharmaceutical development study: Production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. Int J Pharm. 2019;563:110-21. doi: 10.1016/j. ijpharm.2019.03.056, PMID: 30935913

Sampathi S, Prajapati S, Junnuthula V, Dyawanapelly S. Pharmacokinetics and anti-diabetic studies of gliclazide nanosuspension. Pharmaceutics. 2022 Sep;14(9):1947. doi: 10.3390/ pharmaceutics14091947, PMID: 36145695

Smita SA, Sagar TM, Saudagar RB. Nanosuspension: An overview. Int J Curr Pharm Res. 2017 Mar;9(3):19-23.

Pailla SR, Talluri S, Rangaraj N, Ramavath R, Challa VS, Doijad N, et al. Intranasal zotepine nanosuspension: Intended for improved brain distribution in rats. Daru. 2019 Feb;27(2):541-56. doi: 10.1007/s40199- 019-00281-4, PMID: 31256410

Bajaj A, Rao MR, Pardeshi A, Sali D. Nanocrystallization by evaporative antisolvent technique for solubility and bioavailability enhancement of telmisartan. AAPS PharmSciTech. 2012 Apr;13(4):1331-40. doi: 10.1208/s12249-012-9860-x, PMID: 23054986

Sahu BP, Das MK. Nanosuspension for enhancement of oral bioavailability of felodipine. Appl Nanosci. 2014 Feb;4(2):189-97. doi: 10.1007/s13204-012-0188-3

Gülbağ Pinar S, Çelebi N. Optimization and evaluation of cyclosporine A nanosuspension stabilized by combination stabilizers using high pressure homogenization method. J Res Pharm. 2019 Jun;23(6):1009-

doi: 10.35333/jrp.2019.65

Sowmya C, Suriyaprakaash KK, Abrar AH. Solid lipid nanoparticles: Modern progress in nose-to-brain transduction. Int J Appl Pharm. 2023 Apr;15(4):20-6.

Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett. 2013 Jan;8(1):102. doi: 10.1186/1556, PMID: 23432972.

Khalifa NE, Nur AO, Osman ZA. Artemether loaded ethylcellulose nanosuspensions: Effects of formulation variables, physical stability and drug release profile. Int J Pharm Pharm Sci. 2017 Jun;9(6):90-6. doi: 10.22159/ijpps.2017v9i6.18321

Wang Y, Han X, Wang J, Wang Y Preparation, characterization and in vivo evaluation of amorphous tacrolimus nanosuspensions produced using CO2-assisted in situ nanoamorphization method. Int J Pharm. 2016 May;505(1-2):35-41. doi: 10.1016/j.ijpharm.2016.03.056, PMID: 27034003.

Kamel AO, Mahmoud AA. Enhancement of human oral bioavailability and in vitro antitumor activity of rosuvastatin via spray dried self-nanoemulsifying drug delivery system. J Biomed Nanotechnol. 2013 Jan;9(1):26-39. doi: 10.1166/jbn.2013.1469, PMID: 23627065.

Fang J, Tanaka M, Takano Y, Sakamoto J. Influence of formulation on the pharmacokinetics of ibrutinib and its application for sustained release oral delivery system. Biol Pharm Bull. 2017 May;40(5):674-80.

van Hoppe S, Rood JJM, Buil L, Wagenaar E, Sparidans RW, Beijnen JH, et al. P-Glycoprotein (MDR1/ABCB1) Restricts Brain Penetration of the Bruton’s Tyrosine Kinase Inhibitor Ibrutinib, While Cytochrome P450-3A (CYP3A) Limits Its Oral Bioavailability. Mol Pharm. 2018 Nov;15(11):5124-34. doi: 10.1021/acs.molpharmaceut.8b00702.

Patel VR, Agrawal YK. Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Technol Res. 2011 Apr;2(2):81-7. doi: 10.4103/2231-4040.82950.

Abourehab MAS, Rajendran RR, Singh A, Pramanik S, Shrivastav P, Ansari MJ, et al. Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci. 2022 Aug;23(16):9035.

Rossier B, Jordan O, Allémann E, Rodríguez-Nogales C. Nanocrystals and nanosuspensions: An exploration from classic formulations to advanced drug delivery systems. Drug Deliv Transl Res. 2024 Dec;14(12):3438-51. doi: 10.1007/s13346-024-01559-0.

Mothilal M, Chaitanya KM, Surya Teja SP, Manimaran V, Damodharan N. Formulation and evaluation of naproxen-eudragit® RS 100 nanosuspension using 32 factorial design. Int J Pharm Pharm Sci. 2014 Jul;6(7):449-55.

Jakka V, Gayatriramyamunagala, Patnala DS, Kuruba R. Nanosuspensions: A stratergy to increase the solubility and bioavailability of poorly water-soluble drugs. Asian J Pharm Clin Res. 2023 May;16(5):33-40.

Bose P, Gandhi VV, Keating MJ. Pharmacokinetic and pharmacodynamic evaluation of ibrutinib for the treatment of chronic lymphocytic leukemia: rationale for lower doses. Expert Opin Drug Metab Toxicol. 2016 Nov;12(11):1381-92. doi: 10.1080/17425255.2016.1239717

Published

07-05-2025

How to Cite

VALLABH DEULKAR, and PATHURI RAGHUVEER. “PREPARATION OF IBRUTINIB-LOADED NANOSUSPENSION: IN VITRO AND IN VIVO PHARMACOKINETIC EVALUATION FOR ENHANCED DISSOLUTION AND BIOAVAILABILITY”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 5, May 2025, pp. 169-74, doi:10.22159/ajpcr.2025v18i5.54154.

Issue

Section

Original Article(s)