EFFECTIVENESS OF VIRTUAL REALITY ON FUNCTIONAL OUTCOME IN MEDIAN NERVE INJURED PATIENTS

Authors

  • DHANUSIA S Department of Neuroscience, Saveetha College of Physiotherapy, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India.
  • BAROON NALLUSAMY Department of Neuroscience, Saveetha College of Physiotherapy, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India. https://orcid.org/0009-0003-9383-5954
  • PRATHAP SUGANTHIRABABU Department of Neuroscience, Saveetha College of Physiotherapy, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i5.54272

Keywords:

Conventional therapy, Nine-hole peg test, Hand held dynamometer, Motor recovery, Nerve regeneration

Abstract

Objectives: Injuries to the median nerve, frequently caused by trauma or repetitive strain, may result in significant functional limitations, motor and sensory deficits. Virtual reality (VR) is increasingly recognized in neurological rehabilitation, but there is limited information in the literature regarding this topic. This study aims to evaluate the effectiveness of VR treatments on functional outcomes in patients with median nerve injuries.

Methods: In an experimental study, 40 median nerve injury patients were split into two categories according to inclusion and exclusion standards by simple random sampling method in a private setting. The conventional rehabilitation (CR) was administered in Group 1 (n=20), while the VR therapy in Group 2 (n=20). As outcome measures, Hand Held Dynamometer (HHD) and the Nine Hole Peg Test (NHPT) scale were used.

Results: VR therapy and CR demonstrated enhancements in functional results for people with median nerve injuries, but the post-test results in Group 2 showed a greater mean in HHD (17.85) than in Group 1 (13.10). The average difference in the NHPT was 35.95 for Group 1 and 21.25 for Group 2, suggesting that VR enhances functional results.

Conclusion: VR therapy and CR showed statistically significant improvements in the functional outcomes of patients with median nerve injuries, whereas VR therapy demonstrated greater enhancement of motor skills. This evidence supports VR therapy as a feasible option to conventional approaches.

Downloads

Download data is not yet available.

References

Murphy KA, Morrisonponce D. Anatomy, shoulder and upper limb, median nerve. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2025 Jan. PMID 28846302

Ghosh B, Dilkash MN, Prasad S, Sinha SK. Anatomical variation of median nerve: Cadaveric study in brachial plexus. Anat Cell Biol. 2022 Jun 30;55(2):130-4. doi: 10.5115/acb.22.022, PMID 35718802, PMC9256496

Soubeyrand M, Melhem R, Protais M, Artuso M, Crézé M. Anatomy of the median nerve and its clinical applications. Hand Surg Rehabil. 2020 Feb;39(1):2-18. doi: 10.1016/j.hansur.2019.10.197, PMID 31816428

Griffin MF, Malahias M, Hindocha S, Khan WS. Peripheral nerve injury: Principles for repair and regeneration. Open Orthop J. 2014 Jun 27;8:199-203. doi: 10.2174/1874325001408010199, PMID 25067975, PMC4110386

Murphy RN, De Schoulepnikoff C, Chen JH, Columb MO, Bedford J, Wong JK, et al. The incidence and management of peripheral nerve injury in England (2005-2020). J Plast Reconstr Aesthet Surg. 2023 May;80:75-85. doi: 10.1016/j.bjps.2023.02.017, PMID 36996504

Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol. 2008 Sep;119(9):1951-65. doi: 10.1016/j. clinph.2008.03.018, PMID 18482862

Dydyk AM, Negrete G, Sarwan G, Cascella M. Median Nerve Injury. Treasure Island, FL: StatPearls Publishing; 2025 Jan.

Hussain G, Wang J, Rasul A, Anwar H, Qasim M, Zafar S, et al. Current status of therapeutic approaches against peripheral nerve injuries: A detailed story from injury to recovery. Int J Biol Sci. 2020 Jan 1;16(1):116-34. doi: 10.7150/ijbs.35653, PMID 31892850, PMC6930373

Soldado F, Bertelli JA, Ghizoni MF. High median nerve injury: Motor and sensory nerve transfers to restore function. Hand Clin. 2016 May;32(2):209- 17. doi: 10.1016/j.hcl.2015.12.008, PMID 27094892

Pederson WC. Median nerve injury and repair. J Hand Surg Am. 2014 Jun;39(6):1216-22. doi: 10.1016/j.jhsa.2014.01.025, PMID 24862118

Wang ML, Rivlin M, Graham JG, Beredjiklian PK. Peripheral nerve injury, scarring, and recovery. Connect Tissue Res. 2019 Jan;60(1):3-9. doi: 10.1080/03008207.2018.1489381, PMID 30187777

Melkani I, Kumar B, Pandey NK, Baghel DS, Singh S. Statins: A new therapeutic approach for the treatment of neuropathic pain. Int J Appl Pharm. 2024;16(5):22-30. doi: 10.22159/ijap.2024v16i5.50456

Baba H, Bunu SJ. Spectroscopic and molecular docking analysis of phytoconstituent isolated from Solenostemon monostachyus as potential cyclooxygenase enzymes inhibitor. Int J Chem Res. 2025 Jan;9(1):1-6. doi: 10.22159/ijcr.2025v9i1.241

Neal S, Fields KB. Peripheral nerve entrapment and injury in the upper extremity. Am Fam Physician. 2010 Jan 15;81(2):147-55. PMID 20082510

Asirvatham T, Boppana A, Chandran PR, Kariyathankavil I, Al Abdulla SS. Virtual reality rehabilitation for optimizing function following radial nerve injury: A case report. Clin Neurol Neurosci. 2022;6(3):45-9.

Gatica-Rojas V, Méndez-Rebolledo G. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases. Neural Regen Res. 2014 Apr 15;9(8):888-96. doi: 10.4103/1673-5374.131612, PMID 25206907, PMC4146258

Nishitha K, Anitha A, Thaheera D. Effectiveness of virtual reality-based rehabilitation and high-intensity exercise program for total knee arthroplasty patients: A randomised controlled trial. J Clin Diagn Res. 2024 Nov 1;18(11):YC01-8. doi: 10.7860/JCDR/2024/71122.20263

Holmes DE, Charles DK, Morrow PJ, McClean S, McDonough S. Evaluation of leap motion controller and oculus rift for virtual-reality-based upper limb stroke rehabilitation. J Altern Med Res. 2017 Oct 1;9(4):379-89.

Li Y, Jiang C, Li H, Su Y, Li M, Cao Y, et al. Combat sports in virtual reality for rehabilitation and disability adaptation: A mini-review. Front Public Health. 2025 Feb 27;13:1557338. doi: 10.3389/ fpubh.2025.1557338, PMID 40084202, PMC11903427

Novak CB, Von Der Heyde RL. Evidence and techniques in rehabilitation following nerve injuries. Hand Clin. 2013 Aug;29(3):383-92. doi: 10.1016/j.hcl.2013.04.012, PMID 23895718

Chen B, Liu L, Bin Chen L, Cao X, Han P, Wang C, et al. Concurrent validity and reliability of a handheld dynamometer in measuring isometric shoulder rotational strength. J Sport Rehabil. 2021 Jan 19;30(6):965-8. doi: 10.1123/jsr.2020-0021, PMID 33465764

Mendoza-Sánchez S, Molina-Rueda F, Florencio LL, Carratalá- Tejada M, Cuesta-Gómez A. Reliability and agreement of the nine hole peg test in patients with unilateral spastic cerebral palsy. Eur J Pediatr. 2022 Jun;181(6):2283-90. doi: 10.1007/s00431-022-04423-w, PMID 35212827, PMC8873351

Kiper P, Szczudlik A, Agostini M, Opara J, Nowobilski R, Ventura L, et al. Virtual reality for upper limb rehabilitation in subacute and chronic stroke: A randomized controlled trial. Arch Phys Med Rehabil. 2018 May;99(5):834-42.e4. doi: 10.1016/j.apmr.2018.01.023, PMID 29453980

Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017 Nov 20;11(11):CD008349. doi: 10.1002/14651858.CD008349. pub4, PMID 29156493, PMC6485957

Ikbali Afsar S, Mirzayev I, Umit Yemisci O, Cosar Saracgil SN. Virtual reality in upper extremity rehabilitation of stroke patients: A randomized controlled trial. J Stroke Cerebrovasc Dis. 2018 Dec;27(12):3473-8. doi: 10.1016/j. jstrokecerebrovasdis.2018.08.007, PMID 30193810

Kouser N, Lohar D, Khan J, Vajpayee A. Assessment and management of cognition and motor impairment after stroke through exploratory data analysis and formulation of a model incorporating conventional existing and newer neuro-technology tools. Int J Curr Pharm Res. 2024 Sep;16(5):104-7. doi: 10.22159/ijcpr.2024v16i5.5088

Brochard S, Robertson J, Médée B, Rémy-Néris O. What’s new in new technologies for upper extremity rehabilitation? Curr Opin Neurol. 2010 Dec;23(6):683-7. doi: 10.1097/WCO.0b013e32833f61ce, PMID 20852420

Choi YH, Paik NJ. Mobile game-based virtual reality program for upper extremity stroke rehabilitation. J Vis Exp. 2018 Mar 8;133:56241. doi: 10.3791/56241, PMID 29578520, PMC5931529

Malkawi R. Revolutionizing drug delivery innovation: Leveraging AI-driven chatbots for enhanced efficiency. Int J Appl Pharm. 2024;16(2):52-6. doi: 10.22159/ijap.2024v16i2.50182

Lalwani Y, Suvarna V. Global outlook on medical device industry. Int J Pharm Pharm Sci. 2021 Aug;13(8):1-8. doi: 10.22159/ ijpps.2021v13i8.41372

Published

07-05-2025

How to Cite

DHANUSIA S, et al. “EFFECTIVENESS OF VIRTUAL REALITY ON FUNCTIONAL OUTCOME IN MEDIAN NERVE INJURED PATIENTS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 5, May 2025, pp. 137-41, doi:10.22159/ajpcr.2025v18i5.54272.

Issue

Section

Original Article(s)