HOPES AND HURDLES OF DENDRIMERS FOR THE TREATMENT OF PARKINSON’S DISEASE

Authors

  • KHUSHI AGGARWAL Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, India. https://orcid.org/0009-0006-4054-6819
  • SHALU VERMA Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, India. https://orcid.org/0000-0003-3845-3710
  • ARJEETA SINGH RATHORE Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, India.
  • TARUN PARASHAR Department of Pharmaceutics, School of Pharmacy and Research, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand, India

DOI:

https://doi.org/10.22159/ajpcr.2025v18i6.54401

Keywords:

Dendrimers, Nanotechnology, Brain, Neurodegenerative disease, Parkinson

Abstract

Neurodegenerative conditions include Parkinson’s disease (PD), a prevalent movement disease marked by Lewy body aggregation in the midbrain and a gradual loss of dopamine neurons. It is the second most common neurological condition that progresses faster. The exact cause of this idiopathic condition is not known, while risk factors, such as aging, pesticide exposure, family history, and environmental pollutants are linked to it. Both motor and non-motor signs are displayed, such as bradykinesia, stiffness, stooping posture, and rest tremor. Additional symptoms of PD include autonomic and speech difficulties, cognitive impairment (dementia), and neurobehavioral disorders (depression). The only long-term and symptomatic treatments available for PD are inadequate. PD patients are challenging to treat medically because there are few PD medications available, and levodopa is the usual course of treatment. However, prolonged usage of levodopa results in dyskinesia. New treatments targeting pertinent targets in various diseases have been developed as a result of this challenge. Novel drug delivery systems are designed to prevent, diagnose, and treat various diseases while improving the overall efficacy of medications to overcome drawbacks, such as poor drug penetration in the brain, poor bioavailability, limited solubility, severe adverse effects, and long-term ineffectiveness. There are various novel approaches present for the treatment of different diseases, including liposomes, nanoemulsion, niosomes, dendrimers (DDs), and solid lipid nanoparticles. DDs have become viable substitutes for existing treatments. The unique polymeric structures known as DDs offer a versatile framework for creating a range of nanosystems that can be used to cure different diseases and ultimately improve the lives of millions of people worldwide. DDs have been suggested as intriguing drug delivery vehicles that can penetrate the blood–brain barrier and boost the bioavailability of traditional medications in the brain and genetic material by decreasing the synthesis of particular targets. They are also effective agents that block alpha-synuclein fibrillation and have anti-inflammatory qualities. In this review, we will talk about the novel drug delivery approach based on DD formulations and its recent advancements for the treatment of PD.

Downloads

Download data is not yet available.

References

Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson’s disease with the alpha-synuclein protein. Front Pharmacol. 2020 Apr;11:356. doi: 10.3389/ FPHAR.2020.00356, PMID 32390826

Goetz CG. The history of Parkinson’s disease: Early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med. 2011 Sep;1(1):a008862. doi: 10.1101/CSHPERSPECT.A008862, PMID 22229124

Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368-76. doi: 10.1136/ JNNP.2007.131045, PMID 18344392

Cerri S, Mus L, Blandini F. Parkinson’s disease in women and men: What’s the difference? J Parkinsons Dis. 2019;9(3):501-15. doi: 10.3233/JPD-191683, PMID 31282427

Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384-6. doi: 10.1212/01. WNL.0000247740.47667.03, PMID 17082464

Calabresi P, Picconi B, Parnetti L, Di Filippo M. A convergent model for cognitive dysfunctions in Parkinson’s disease: The critical dopamine-acetylcholine synaptic balance. Lancet Neurol. 2006;5(11):974-83. doi: 10.1016/S1474-4422(06)70600-7, PMID 17052664

Schulz-Schaeffer WJ. The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol. 2010 Aug;120(2):131-43. doi: 10.1007/S00401-010-0711-0, PMID 20563819

Veldman BA, Wijn AM, Knoers N, Praamstra P, Horstink MW. Genetic and environmental risk factors in Parkinson’s disease. Clin Neurol Neurosurg. 1998 Mar;100(1):15-26. doi: 10.1016/S0303- 8467(98)00009-2, PMID 9637199

Cheng HC, Ulane CM, Burke RE. Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol. 2010 Jun;67(6):715-25. doi: 10.1002/ANA.21995, PMID 20517933

Rizek P, Kumar N, Jog MS. An update on the diagnosis and treatment of Parkinson disease. CMAJ. 2016 Nov;188(16):1157-65. doi: 10.1503/ CMAJ.151179/-/DC1, PMID 27221269

Hely MA, Fung VS, Morris JG. Treatment of Parkinson’s disease. J Clin Neurosci. 2000;7(6):484-94. doi: 10.1054/jocn.2000.0766, PMID 11029227

Van Wamelen DJ, Rukavina K, Podlewska AM, Chaudhuri KR. Advances in the pharmacological and non-pharmacological management of non-motor symptoms in Parkinson’s disease: An update since 2017. Curr Neuropharmacol. 2023 Mar;21(8):1786-805. doi: 10.2 174/1570159X20666220315163856, PMID 35293295

Münchau A, Bhatia KP. Pharmacological treatment of Parkinson’s disease. Postgrad Med J. 2000;76(900):602-10. doi: 10.1136/ PMJ.76.900.602, PMID 11009573

View of Potential Activity of Kaempferol as Anti-parkinson’s; Molecular Docking and Pharmacophore Modelling Study. Available from: https://innovareacademics.in/journals/index.php/ijap/article/ view/47355/28035 [Last accessed on 2025 Apr 17].

Kwon DK, Kwatra M, Wang J, Ko HS. Levodopa-induced dyskinesia in Parkinson’s disease: Pathogenesis and emerging treatment strategies. Cells. Dec. 2022;11(23):3736. doi: 10.3390/CELLS11233736, PMID 36496996

View of Enhancing Nose-to-Brain Delivery of Piribedil: Development of a Nanosuspension Dispersed in Nasal in-situ Gelling System. Available from: https://innovareacademics.in/journals/index.php/ijap/ article/view/50242/30067 [Last accessed on 2025 Apr 17].

Hobson DE, Pourcher E, Martin WR. Ropinirole and pramipexole, the new agonists. Can J Neurol Sci. 1999;26 Suppl 2:S27-33. doi: 10.1017/ S0317167100000068, PMID 10451757

Regensburger M, Ip CW, Kohl Z, Schrader C, Urban PP, Kassubek J, et al. Clinical benefit of MAO-B and COMT inhibition in Parkinson’s disease: Practical considerations. J Neural Transm (Vienna). 2023 Jun;130(6):847-61. doi: 10.1007/S00702-023-02623-8, PMID 36964457

Pandey S, Srivanitchapoom P. Levodopa-induced dyskinesia: Clinical features, pathophysiology, and medical management. Ann Indian Acad Neurol. 2017 Jul;20(3):190-8. doi: 10.4103/aian.AIAN_239_17, PMID 28904447

Weil RS, Reeves S. Hallucinations in Parkinson’s disease: New insights into mechanisms and treatments. Adv Clin Neurosci Rehabil. 2020;19(4):ONNS5189. doi: 10.47795/ONNS5189, PMID 33102741

Bloem BR, de Vries NM, Ebersbach G. Nonpharmacological treatments for patients with Parkinson’s disease. Mov Disord. 2015 Sep;30(11):1504-20. doi: 10.1002/MDS.26363, PMID 26274930

Tonda-Turo C, Origlia N, Mattu C, Accorroni A, Chiono V. Current limitations in the treatment of Parkinson’s and Alzheimer’s diseases: State-of-the-art and future perspective of polymeric carriers. Curr Med Chem. 2018 Feb;25(41):5755-71. doi: 10.2174/0929867325666180221 125759, PMID 29473493

Chawla S, Kalyane D, Tambe V, Deb PK, Kalia K, Tekade RK. Evolving nanoformulation strategies for diagnosis and clinical interventions for Parkinson’s disease. Drug Discov Today. 2020 Feb;25(2):392-405. doi: 10.1016/J.DRUDIS.2019.12.005, PMID 31877354

Pathak Y. Nanomedicine and nano formulations for neurodegenerative diseases. Biomed J Sci Tech Res. 2022 Feb;42(2):33387-96. doi: 10.26717/BJSTR.2022.42.006713

Caminade AM, Laurent R, Majoral JP. Characterization of dendrimers. Adv Drug Deliv Rev. 2005 Dec;57(15):2130-46. doi: 10.1016/J. ADDR.2005.09.011, PMID 16289434

Svenson S, Tomalia DA. Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev. 2012 Dec;64:102-15. doi: 10.1016/J.ADDR.2012.09.030

Salat D, Tolosa E. Levodopa in the treatment of Parkinson’s disease: Current status and new developments. J Parkinsons Dis. 2013;3(3):255-69. doi: 10.3233/JPD-130186, PMID 2394898928. Jing XZ, Yang HJ, Taximaimaiti R, Wang XP. Advances in the therapeutic use of non-ergot dopamine agonists in the treatment of motor and non-motor symptoms of Parkinson’s disease. Curr Neuropharmacol. 2023 Sep;21(5):1224-40. doi: 10.2174/1570159X20 666220915091022, PMID 36111769

Montastruc JL, Rascol O, Senard JM. Current status of dopamine agonists in Parkinson’s disease management. Drugs. 1993 Oct;46(3):384-93. doi: 10.2165/00003495-199346030-00005, PMID 7693430

Tan YY, Jenner P, Di Chen SD. Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: Past, present, and future. J Parkinsons Dis. 2022;12(2):477-93. doi: 10.3233/JPD-212976, PMID 34957948

Paz RM, Murer MG. Mechanisms of antiparkinsonian anticholinergic therapy revisited. Neuroscience. 2021 Jul;467:201-17. doi: 10.1016/J. NEUROSCIENCE.2021.05.026, PMID 34048797

Lees AJ, “Dopamine agonists in Parkinson’s disease: a look at apomorphine,” Fundamental and Clinical Pharmacology, vol. 7, no. 3–4, pp. 121–128, Apr. 1993, doi: 10.1111/J.1472-8206.1993. TB00226.X.

Bonifácio MJ, Palma PN, Almeida L, Soares-Da-Silva P. Catechol-O-methyltransferase and its inhibitors in Parkinson’s disease. CNS Drug Rev. 2007 Sep;13(3):352-79. doi: 10.1111/J.1527-3458.2007.00020.X, PMID 17894650

Vögtle F, Gestermann S, Hesse R, Schwierz H, Windisch B. Functional dendrimers. Prog Polym Sci. 2000;25(7):987-1041. doi: 10.1016/ S0079-6700(00)00017-4

Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK. Dendrimers: Emerging polymers for drug-delivery systems. Eur J Pharm Sci. 2009 Oct;38(3):185-96. doi: 10.1016/J.EJPS.2009.07.008, PMID 19646528

View of Dendrimers: A Review on its Snythesis, Types, Properties and Applications. Available from: https://journals.innovareacademics. in/index.php/ijcpr/article/view/44643/26239 [Last accessed on 2025 Apr 17].

Maiti PK, Çaǧin T, Wang G, Goddard WA. Structure of PAMAM dendrimers: Generations 1 through 11. Macromolecules. 2004 Aug;37(16):6236-54. doi: 10.1021/ma035629b

Gupta V, Nayak SK. Dendrimers: A review on synthetic approaches. J Appl Pharm Sci. 2015 Mar;5(3):117-22. doi: 10.7324/ JAPS.2015.50321

Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications. Materials (Basel). 2019 Dec;13(1):65. doi: 10.3390/MA13010065, PMID 31877717

Tripathy S, Das MK. Dendrimers and their applications as novel drug delivery carriers. J Appl Pharm Sci. 2013 Sep;3(9):142-9. doi: 10.7324/ JAPS.2013.3924

Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 2014 Jul;6(3):139-50. doi: 10.4103/0975- 7406.130965, PMID 25035633

Kaurav M, Ruhi S, Al-Goshae HA, Jeppu AK, Ramachandran D, Sahu RK, et al. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment. Front Pharmacol. 2023;14:1159131. doi: 10.3389/FPHAR.2023.1159131, PMID 37006997

View of an Overview: Recent Development in Transdermal Drug Delivery. Available from: https://journals.innovareacademics.in/index. php/ijpps/article/view/45471/27033 [Last accessed on 2025 Apr 17].

Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, et al. Nanodelivery of nucleic acids. Nat Rev Methods Primers. 2022 Apr;2(1):1-21. doi: 10.1038/s43586-022-00104-y, PMID 35480987

Pérez-Ferreiro M, Abelairas AM, Criado A, Gómez IJ, Mosquera J. Dendrimers: Exploring their wide structural variety and applications. Polymers (Basel). 2023 Nov;15(22):4369. doi: 10.3390/ POLYM15224369, PMID 38006093

Li X, Naeem A, Xiao S, Hu L, Zhang J, Zheng Q. Safety challenges and application strategies for the use of dendrimers in medicine. Pharmaceutics. 2022 Jun;14(6):1292. doi: 10.3390/ PHARMACEUTICS14061292, PMID 35745863

Kim C, Hong JH. Carbosilane and carbosiloxane dendrimers. Molecules. 2009 Sep;14(9):3719-30. doi: 10.3390/MOLECULES14093719, PMID 19783954

Kaur D, Jain K, Mehra NK, Kesharwani P, Jain NK. A review on comparative study of PPI and PAMAM dendrimers. J Nanopart Res. 2016 Jun;18(6):1-14. doi: 10.1007/s11051-016-3423-0

Taratula O, Garbuzenko OB, Kirkpatrick P, Pandya I, Savla R, Pozharov VP, et al. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J Control Release. 2009 Dec;140(3):284-93. doi: 10.1016/J.JCONREL.2009.06.019, PMID 19567257

Mendes LP, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017 Aug;22(9):1401. doi: 10.3390/MOLECULES22091401, PMID 28832535

Kodama Y, Nakamura T, Kurosaki T, Egashira K, Mine T, Nakagawa H, et al. Biodegradable nanoparticles composed of dendrigraft poly-l-lysine for gene delivery. Eur J Pharm Biopharm. 2014 Aug;87(3):472-9. doi: 10.1016/J.EJPB.2014.04.013, PMID 24813391

Milowska K, Gabryelak T, Bryszewska M, Caminade AM, Majoral JP. Phosphorus-containing dendrimers against α-synuclein fibril formation. Int J Biol Macromol. 2012 May;50(4):1138-43. doi: 10.1016/J.IJBIOMAC.2012.02.003, PMID 22353396

Pérez-Carrión MD, Posadas I. Dendrimers in neurodegenerative diseases. Processes. 2023 Jan;11(2):319. doi: 10.3390/PR11020319

Ortega P, Sánchez-Nieves J, Cano J, Gómez R, De La Mata FJ. CHAPTER 5. Poly(carbosilane) dendrimers and other silicon-containing dendrimers. Monogr Supramol Chem. 2020 Jan;29:114-45. doi: 10.1039/9781788012904-00114

Ferrer-Lorente R, Lozano-Cruz T, Fernández-Carasa I, Miłowska K, de la Mata FJ, Bryszewska M, et al. Cationic carbosilane dendrimers prevent abnormal α-synuclein accumulation in Parkinson’s disease patient-specific dopamine neurons. Biomacromolecules. 2021 Nov;22(11):4582-91. doi: 10.1021/acs.biomac.1c00884, PMID 34613701

Milowska K, Szwed A, Mutrynowska M, Gomez-Ramirez R, de la Mata FJ, Gabryelak T, et al. Carbosilane dendrimers inhibit α-synuclein fibrillation and prevent cells from rotenone-induced damage. Int J Pharm. 2015 Apr;484(1-2):268-75. doi: 10.1016/J. IJPHARM.2015.02.066, PMID 25735664

Rekas A, Lo V, Gadd GE, Cappai R, Yun SI. PAMAM dendrimers as potential agents against fibrillation of alpha-synuclein, a Parkinson’s disease-related protein. Macromol Biosci. 2009 Mar;9(3):230-8. doi: 10.1002/MABI.200800242, PMID 19116892

Kecskés A, Tosh DK, Wei Q, Gao ZG, Jacobson KA. GPCR ligand dendrimer (GLiDe) conjugates: Adenosine receptor interactions of a series of multivalent xanthine antagonists. Bioconjug Chem. 2011 Jun;22(6):1115-27. doi: 10.1021/BC1005812, PMID 21539392

Dai W, Zhan M, Gao Y, Sun H, Zou Y, Laurent R, et al. Brain delivery of fibronectin through bioactive phosphorous dendrimers for Parkinson’s disease treatment via cooperative modulation of microglia. Bioact Mater. 2024 Aug;38:45-54. doi: 10.1016/J.BIOACTMAT.2024.04.005, PMID 38699237

Sharma R, Kim SY, Sharma A, Zhang Z, Kambhampati SP, Kannan S, et al. Activated microglia targeting dendrimer-minocycline conjugate as therapeutics for neuroinflammation. Bioconjug Chem. 2017 Nov;28(11):2874-86. doi: 10.1021/ACS. BIOCONJCHEM.7B00569, PMID 29028353

Kannan S, Dai H, Navath RS, Balakrishnan B, Jyoti A, Janisse J, et al. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci Transl Med. 2012 Apr;4(130):130ra46. doi: 10.1126/SCITRANSLMED.3003162, PMID 22517883

Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, et al. Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res. 2010 Dec;214(2):193-200. doi: 10.1016/J. BBR.2010.05.023, PMID 20493905

Huang R, Ma H, Guo Y, Liu S, Kuang Y, Shao K, et al. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson’s disease. Pharm Res. 2013 Oct;30(10):2549-59. doi: 10.1007/S11095-013-1005-8, PMID 23703371

Al Igartúa DE, González-Lizárraga F, Martinez CS, Alonso SV, Ávila CL, Chehín R, et al. PAMAM dendrimers of generation 4.5 loaded with curcumin interfere with α-synuclein aggregation. OpenNano. 2023 May;11:100140. doi: 10.1016/j.onano.2023.100140

Igartúa DE, Martinez CS, Temprana CF, Alonso SD, Prieto MJ. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization. Int J Pharm. 2018 Jun;544(1):191-202. doi: 10.1016/J. IJPHARM.2018.04.032, PMID 29678547

Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnol. 2018 Sep;16(1): 1-33. doi: 10.1186/S12951-018-0392-8, PMID 30231877

Kumar P, Verma S, Singh A, Parashar T. Nanotechnology-driven therapeutics: Enhancing brain drug delivery via NASAL pathways. Int J Appl Pharm. 2025 Mar;17(2):78-89. doi: 10.22159/ IJAP.2025V17I2.52879

Hersh AM, Alomari S, Tyler BM. Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in neuro-oncology. Int J Mol Sci. 2022 Apr;23(8):4153. doi: 10.3390/ IJMS23084153, PMID 35456971

Yadav VK, Dhanasekaran S, Choudhary N, Nathiya D, Thakur V, Gupta R, et al. Recent advances in nanotechnology for Parkinson’s disease: Diagnosis, treatment, and future perspectives. Front Med (Lausanne). 2025 Jan;12:1535682. doi: 10.3389/fmed.2025.1535682, PMID 39911864

Yadav HK, Almokdad AA, Shaluf SI, and Debe MS, “Polymer-Based Nanomaterials for Drug-Delivery Carriers,” Nanocarriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery, pp. 531–556, Jan. 2019, doi: 10.1016/B978-0-12-814033-8.00017-5.

View of Solid Lipid Nanopartilces: Modern Progress in Nose-to-Brain Transduction. Available from: https://innovareacademics.in/ journals/index.php/ijap/article/view/47897/28331 [Last accessed on 2025 Apr 17].

Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, Taliyan R, et al. Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB. Pharmaceutics. 2021 Aug;13(8):1183. doi: 10.3390/PHARMACEUTICS13081183, PMID 34452143

Preeti, Sambhakar S, Malik R, Bhatia S, Al Harrasi A, Rani C, et al. Nanoemulsion: An emerging novel technology for improving the bioavailability of drugs. Scientifica (Cairo). 2023;2023:6640103. doi: 10.1155/2023/6640103, PMID 37928749

Milan J, Niemczyk K, Kus-Liśkiewicz M. Treasure on the earth-gold nanoparticles and their biomedical applications. Materials (Basel). 2022 May;15(9):3355. doi: 10.3390/MA15093355, PMID 35591689

Kumar S, Dang S, Nigam K, Ali J, Baboota S. Selegiline nanoformulation in attenuation of oxidative stress and upregulation of dopamine in the brain for the treatment of Parkinson’s disease. Rejuvenation Res. Oct. 2018;21(5):464-76. doi: 10.1089/REJ.2017.2035, PMID 29717617

Choudhury H, Zakaria NF, Tilang PA, Tzeyung AS, Pandey M, Chatterjee B, et al. Formulation development and evaluation of Rotigotine mucoadhesive nanoemulsion for intranasal delivery. J Drug Deliv Sci Technol. 2019 Dec;54:101301. doi: 10.1016/j. jddst.2019.101301

Azeem A, Talegaonkar S, Negi LM, Ahmad FJ, Khar RK, Iqbal Z. Oil based nanocarrier system for transdermal delivery of ropinirole: A mechanistic, pharmacokinetic and biochemical investigation. Int J Pharm. 2012 Jan;422(1-2):436-44. doi: 10.1016/J. IJPHARM.2011.10.039, PMID 22057087

Yadav S, Gandham SK, Panicucci R, Amiji MM. Intranasal brain delivery of cationic nanoemulsion-encapsulated TNFα siRNA in prevention of experimental neuroinflammation. Nanomedicine. 2016 May;12(4):987-1002. doi: 10.1016/J.NANO.2015.12.374, PMID 26767514

Hu K, Chen X, Chen W, Zhang L, Li J, Ye J, et al. Neuroprotective effect of gold nanoparticles composites in Parkinson’s disease model. Nanomedicine. 2018 Jan;14(4):1123-36. doi: 10.1016/J. NANO.2018.01.020, PMID 29474924

Sardoiwala MN, Srivastava AK, Kaundal B, Karmakar S, Choudhury SR. Recuperative effect of metformin loaded polydopamine nanoformulation promoting EZH2 mediated proteasomal degradation of phospho-α-synuclein in Parkinson’s disease model. Nanomedicine. 2020 Feb;24:102088. doi: 10.1016/J. NANO.2019.102088, PMID 31476446

Ahmad N. Rasagiline-encapsulated chitosan-coated PLGA nanoparticles targeted to the brain in the treatment of Parkinson’s disease. J Liq Chromatogr Relat Technol. 2017 Aug;40(13):677-90. doi: 10.1080/10826076.2017.1343735

Bi CC, Wang A, Chu Y, Liu S, Mu H, Liu W, et al. Intranasal delivery of Rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int J Nanomedicine. 2016 Dec;11:6547-59. doi: 10.2147/IJN.S120939, PMID 27994458

Ren T, Yang X, Wu N, Cai Y, Liu Z, Yuan W. Sustained-release formulation of levodopa methylester/Benserazide for prolonged suppressing dyskinesia expression in 6-OHDA-leisoned rats. Neurosci Lett. 2011 Sep;502(2):117-22. doi: 10.1016/J.NEULET.2011.07.042, PMID 21835223

Gambaryan PY, Kondrasheva IG, Severin ES, Guseva AA, Kamensky AA. Increasing the efficiency of Parkinson’s disease treatment using a poly(lactic-co-glycolic acid) (PLGA) Based L-dopa delivery system. Exp Neurobiol. 2014 Sep;23(3):246-52. doi: 10.5607/ EN.2014.23.3.246, PMID 25258572

Dudhipala N, Gorre T. Neuroprotective effect of ropinirole lipid nanoparticles enriched hydrogel for Parkinson’s disease: In vitro, ex vivo, pharmacokinetic and pharmacodynamic evaluation. Pharmaceutics. 2020 May;12(5):448. doi: 10.3390/PHARMACEUTICS12050448, PMID 32414195

Al Gartziandia O, Herrán E, Ruiz-Ortega JA, Miguelez C, Igartua M, Lafuente JV, et al. Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with GDNF improves behavioral and histological recovery in a partial lesion model of Parkinson’s disease. J Biomed Nanotechnol. 2016 Dec;12(12):2220-30. doi: 10.1166/JBN.2016.2313, PMID 29372975

Mani M, Balasubramanian S, Manikandan KR, Kulandaivel B. Neuroprotective potential of naringenin-loaded solid-lipid nanoparticles against rotenone-induced Parkinson’s disease model. J Appl Pharm Sci. 2021 Feb;11(2):19-28. doi: 10.7324/JAPS.2021.110203

Raj R, Wairkar S, Sridhar V, Gaud R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int J Biol Macromol. 2018 Apr;109:27-35. doi: 10.1016/J.IJBIOMAC.2017.12.056, PMID 29247729

Pandey PK, Sharma AK, Rani S, Mishra G, Kandasamy G, Patra AK, et al. MCM-41 nanoparticles for brain delivery: Better choline-esterase and amyloid formation inhibition with improved kinetics. ACS Biomater Sci Eng. 2018 Aug;4(8):2860-9. doi: 10.1021/ ACSBIOMATERIALS.8B00335, PMID 33435009

Rukmangathen R, Yallamalli IM, Yalavarthi PR. Biopharmaceutical potential of selegiline loaded chitosan nanoparticles in the management of Parkinson’s disease. Curr Drug Discov Technol. 2019 Apr;16(4):417-25. doi: 10.2174/1570163815666180418144019, PMID 29669501

Tsai MJ, Huang YB, Wu PC, Fu YS, Kao YR, Fang JY, et al. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: Pharmacokinetic and behavioral evaluations. J Pharm Sci. 2011;100(2):547-57. doi: 10.1002/JPS.22285, PMID 20740670

Kang YS, Jung HJ, Oh JS, Song DY. Use of pegylated immunoliposomes to deliver dopamine across the blood-brain barrier in a rat model of Parkinson’s disease. CNS Neurosci Ther. 2016 Oct;22(10):817-23. doi: 10.1111/CNS.12580, PMID 27350533

Esposito E, Fantin M, Marti M, Drechsler M, Paccamiccio L, Mariani P, et al. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm Res. 2008 Jul;25(7):1521-30. doi: 10.1007/ S11095-007-9514-Y, PMID 18172580

Kahana M, Weizman A, Gabay M, Loboda Y, Segal-Gavish H, Gavish A, et al. Liposome-based targeting of dopamine to the brain: A novel approach for the treatment of Parkinson’s disease. Mol Psychiatry. 2021 Jun;26(6):2626-32. doi: 10.1038/S41380-020-0742-4, PMID 32372010

Ordonio MB, Zaki RM, Elkordy AA. Dendrimers-based drug delivery system: A novel approach in addressing Parkinson’s disease. Future Pharmacol. 2022 Oct;2(4):415-30. doi: 10.3390/ FUTUREPHARMACOL2040027

Meng F, Zhong Y, Cheng R, Deng C, Zhong Z. Ph-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: Concept and recent advances. Nanomedicine (Lond). 2014;9(3):487-99. doi: 10.2217/NNM.13.212, PMID 24746192

Satsangi A, Roy SS, Satsangi RK, Tolcher AW, Vadlamudi RK, Goins B, et al. Synthesis of a novel, sequentially active-targeted drug delivery nanoplatform for breast cancer therapy. Biomaterials. 2015 Aug;59:88-101. doi: 10.1016/J.BIOMATERIALS.2015.03.039, PMID 25956854.

Romanowski EG, Yates KA, Paull JR, Heery GP, Shanks RM. Topical Astodrimer sodium, a non-toxic polyanionic dendrimer, demonstrates antiviral activity in an experimental ocular adenovirus infection model. Molecules. 2021 Jun;26(11):3419. doi: 10.3390/ MOLECULES26113419, PMID 34198721

De la Torre BG, Albericio F. The pharmaceutical industry in 2019. An analysis of FDA drug approvals from the perspective of molecules. Molecules. 2020;25(3):745. doi: 10.3390/MOLECULES25030745, PMID 32050446

Akhtar S, Chandrasekhar B, Attur S, Yousif MH, Benter IF. On the nanotoxicity of PAMAM dendrimers: Superfect® stimulates the EGFR– ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells. Int J Pharm. 2013 May;448(1):239-46. doi: 10.1016/J.IJPHARM.2013.03.039, PMID 23538097

Kuang T, Fu D, Chang L, Yang Z, Chen Z, Jin L, et al. Recent progress in dendrimer-based gene delivery systems. Curr Org Chem. 2016;20(17):1820-6. doi: 10.2174/1385272820666151123235059

Nazlı H, Gedik G. In-vitro evaluation of dendrimeric formulation of oxaliplatin. Pharm Dev Technol. 2021;26(7):750-64. doi: 10.1080/10837450.2021.1944205, PMID 34154500

Kelly BD, McLeod V, Walker R, Schreuders J, Jackson S, Giannis M, et al. Abstract 1716: Anticancer activity of the taxane nanoparticles, DEP® docetaxel and DEP® cabazitaxel. Cancer Res. 2020 Aug;80(16 Suppl) Suppl:1716. doi: 10.1158/1538-7445.AM2020-1716

Blyth BJ, Kelly BD, Giannis M, Cargill A, Seta A, Heery GP et al., “Abstract C167: An SN38 dendrimer nanoparticle, DEP irinotecan (SN38-SPL9111), demonstrates efficacy in mouse models of gastrointestinal cancer and augments anti-tumor effects of immune checkpoint blockade and PARP inhibition,” Mol Cancer Ther, vol. 22, no. 12_Supplement, pp. C167–C167, Dec. 2023, doi: 10.1158/1535- 7163.TARG-23-C167.

Singh P. Dendrimers and their applications in immunoassays and clinical diagnostics. Biotechnol Appl Biochem. 2007 Sep;48(1):1-9. doi: 10.1042/BA20070019, PMID 17688425

Published

07-06-2025

How to Cite

KHUSHI AGGARWAL, et al. “HOPES AND HURDLES OF DENDRIMERS FOR THE TREATMENT OF PARKINSON’S DISEASE”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 6, June 2025, pp. 15-29, doi:10.22159/ajpcr.2025v18i6.54401.

Issue

Section

Review Article(s)

Most read articles by the same author(s)