TARGETING POLYCYSTIC OVARIAN SYNDROME INFLAMMATION: DOCKING AND PHYTOCHEMICAL PROFILING OF ANTI-INFLAMMATORY COMPOUNDS IN LEONOTIS NEPETIFOLIA

Authors

  • MERLIN MONISHA M Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Chidambaram, Tamil Nadu, India. https://orcid.org/0000-0001-6510-743X
  • PRAKASH M Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Chidambaram, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i6.54487

Keywords:

Leonotis nepetifolia, GC-MS, PCOS, Inflammatory markers, Docking

Abstract

Objectives: Leonotis nepetifolia is one of the most valuable species in folkloric treatments known to have anti-inflammatory properties devoid of studies on its interventions against polycystic ovarian syndrome (PCOS) - a chronic low-grade inflammatory disorder. This research aims to identify and classify the phytochemicals present in L. nepetifolia using gas chromatography-mass spectrometry (GC-MS). Molecular docking studies were then carried out to analyze their potential binding affinity and interaction with key molecular targets associated with PCOS, offering valuable insights into the fields of natural product pharmacology and women’s healthcare.

Methods: The complete phytochemical profiling of methanolic extract of seeds of L. nepetifolia with the aid of GC-MS and the subsequent in silico docking of the anti-inflammatory compounds in L. nepetifolia, against inflammatory markers responsible for PCOS has been carried out.

Results: Cis-vaccenic acid and octadecanoic acid were the compounds identified as ligands to be docked against the inflammatory proteins responsible for PCOS. CYP19A1 and AdipoR1 were identified as hit targets with the highest binding scores of −6.4 kcaL/moL and −7.6 kcaL/moL when docked against the ligands, cis-vaccenic acid and octadecanoic acid, respectively.

Conclusion: The current study has demonstrated the potential of L. nepetifolia for the development of reliable and effective drugs for treating PCOS. The hit target-ligand interactions can be further investigated for its bio-activities to create new medications. To the best of the authors’ knowledge, this is the first-hand report on phytochemical identification and molecular docking seeking to uncover potential compounds in L. nepetifolia that could alleviate PCOS.

Downloads

Download data is not yet available.

References

Cubeddu LX. Mechanisms by which cancer chemotherapeutic drugs induce emesis. Semin Oncol. 1992;19(6 Suppl 15):2-13. PMID 1485177

Tidke PC, Chambhare N, Umekar MJ, Lohiya RT. Pharmacological activity, chemical composition and medical importance of Leonotis nepetifolia R. Br. J Altern Complement Med. 2021;15(4):29-43.

Sitarek P, Kowalczyk T, Śliwiński T, Hatziantoniou S, Soulintzi N, Pawliczak R, et al. Leonotis nepetifolia transformed root extract reduces pro-inflammatory cytokines and promotes tissue repair in vitro. Int J Environ Res Public Health. 2023 Mar 7;20(6):4706. doi: 10.3390/ ijerph20064706, PMID 36981614

Peng F, Xiao F, Lin L. Protective effects of platycodin D3 on airway remodeling and inflammation via modulating MAPK/NF-KB signaling pathway in asthma mice. Evid Based Complement Alternat Med. 2022;2022(1):1612829. doi: 10.1155/2022/1612829, PMID 35990822

Aboeldalyl S, James C, Seyam E, Ibrahim EM, Shawki HE, Amer S. The role of chronic inflammation in polycystic ovarian syndrome-A systematic review and meta-analysis. Int J Mol Sci. 2021;22(5):2734. doi: 10.3390/ijms22052734, PMID 33800490

Singh S, Pal N, Shubham S, Sarma DK, Verma V, Marotta F, et al. Polycystic ovary syndrome: Etiology, current management, and future therapeutics. J Clin Med. 2023;12(4):1454. doi: 10.3390/jcm12041454, PMID 36835989

Gautam R, Maan P, Jyoti A, Kumar A, Malhotra N, Arora T. The role of lifestyle interventions in PCOS management: A systematic review. Nutrients. 2025;17(2):310. doi: 10.3390/nu17020310, PMID 39861440

Maji SR, Roy C, Sinha SK. Gas chromatography-mass spectrometry (GC-MS): A comprehensive review of synergistic combinations and their applications in the past two decades. J Anal Sci Appl Biotechnol. 2023;5(2):72-85.

Madriwala B, Suma BV, Jays J. Molecular docking study of hentriacontane for anticancer and antitubercular activity. Int J Chem Res. 2022;6(4):1-4. doi: 10.22159/ijcr.2022v6i4.208

Nagre R, Buwa V. Molecular docking studies of monomeric wildtype and mutant (H81A, H49R) SOD1 with edaravone and riluzole. Int J Chem Res. 2022;6(4):5-13. doi: 10.22159/ijcr.2022v6i4.207

Sobolewska D, Paśko P, Galanty A, Makowska-Wąs J, Padło K, Wasilak W. Preliminary phytochemical and biological screening of methanolic and acetone extracts from Leonotis nepetifolia (L.) R. Br. J Med Plants Res. 2012;6(30):4582-4585. doi: 10.5897/JMPR12.578

Ngoci NS, Evalyne M, Ng E. Screening for anti-bacterial activity and phytochemicals of Leonotis nepetifolia leaves methanol extract. J Biotechnol Sci. 2013;1(1):15-21.

Chaubey N, Jain PS. Preliminary physiochemical and phytochemical profile of Leonotis nepetifolia. Saudi J Med Pharm Sci. 2023;9(7):459-464. doi: 10.36348/sjmps.2023.v09i07.014

Da Silva Almeida JR, De Menezes Barbosa J, Bastos Cavalcante N, Delange DM. A review of the chemical composition and biological activity of Leonotis nepetifolia (Linn.) R. Br. (lion’s ear). Rev Cuba Plant Med. 2018;23(4):1-9.

Sharma DK, Dave RS, Shah KR. Phytochemical screening and characterization of volatile compounds by gas chromatography-mass spectrometry from Nephrolepis exaltata. Asian J Pharm Clin Res. 2021;14(3):93-98. doi: 10.22159/ajpcr.2021.v14i7.41869

Baeshen NA, Almulaiky YQ, Afifi M, Al-Farga A, Ali HA, Baeshen NN, et al. GC-MS analysis of bioactive compounds extracted from plant Rhazya stricta using various solvents. Plants (Basel). 2023;12(4):960. doi: 10.3390/plants12040960, PMID 36840308

Riyadi PH, Susanto E, Anggo AD, Arifin MH, Rizki L. Effect of methanol solvent concentration on the extraction of bioactive compounds using ultrasonic-assisted extraction (UAE) from spirulina Platensis. Food Res. 2023;7(Suppl 3):59-66. doi: 10.26656/fr.2017.7(S3).9

Dey MC, Ukil S, Sinhababu A. Physico-chemical characterization, fatty acid constituents, and antibacterial and antioxidant activities of Kleinhovia hospita seed oil. Chem Nat Compd. 2019;55(1):95-98. doi: 10.1007/s10600-019-02621-x

Ganesan T, Subban M, Christopher Leslee DB, Kuppannan SB, Seedevi P. Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea Eriocarpa and its antioxidant and antibacterial activities. Biomass Convers Biorefin. 2022;14:14547-14548. doi: 10.1007/s13399-022-03576-w

Johannes E, Litaay M, Syahribulan. The bioactivity of hexadecanoic acid compound isolated from hydroid Aglaophenia cupressina lamoureoux as antibacterial agent against Salmonella typhi. Int J Biol Med Res. 2016;7:5469-5472.

He S, Zhang Y, Ma Y, Wei D, Qin J. Chemical composition and insecticidal activities of the essential oil from fruits of Euonymus schensianus. Chem Nat Compd. 2019;55(4):748-750. doi: 10.1007/ s10600-019-02799-0

Kapoor R, Huang YS. Gamma linolenic acid: An antiinflammatory omega-6 fatty acid. Curr Pharm Biotechnol. 2006;7(6):531-534. doi: 10.2174/138920106779116874, PMID 17168669

Semwal P, Painuli S, Badoni H, Bacheti RK. Screening of phytoconstituents and antibacterial activity of leaves and bark of Quercus leucotrichophora A. Camus from Uttarakhand Himalaya. Clin Phytosci. 2018;4(1):30. doi: 10.1186/s40816-018-0090-y

Ravindran DR, Bharathithasan M, Ramaiah P, Rasat MS, Rajendran D, Srikumar S, et al. Chemical composition and larvicidal activity of flower extracts from Clitoria ternatea against Aedes (Diptera: Culicidae). J Chem. 2020;2020:1-9. doi: 10.1155/2020/3837207

Duke JA, Beckstrom-Sternberg SM. Duke’s Phytochemical and Ethnobotanical Databases. United States: USDA, Agricultural Research Service, Europe; 2016.

Zhen Z, Xi TF, Zheng YF. Surface modification by natural biopolymer coatings on magnesium alloys for biomedical applications. In: Surface Modification of Magnesium and its Alloys for Biomedical Applications. Cambridge: Woodhead Publishing; 2015. p. 301-333. doi: 10.1016/ B978-1-78242-078-1.00011-6

Hư.10 NT, Tùng PT, Trân LN, PhNn0 NK, Dương NT. Further report on the chemical constituents of the n-hexane extract of Leonotis nepetifolia (L.) R. Br. (Lamiaceae). Sci Technol Dev J. 2021;25(1):2322-2329.

Galli C, Calder PC. Effects of fat and fatty acid intake on inflammatory and immune responses: A critical review. Ann Nutr Metab. 2009;55(1-3):123-139. doi: 10.1159/000228999, PMID 19752539

Belakhdar G, Benjouad A, Abdennebi EH. Determination of some bioactive chemical constituents from Thesium humile Vahl. J Mater Environ Sci. 2015;6(10):2778-2783.

Ademiluyi AO, Ogunsuyi OB, Oboh G, Agbebi OJ. Jimson weed (Datura stramonium L.) alkaloid extracts modulate cholinesterase and monoamine oxidase activities in vitro: Possible modulatory effect on neuronal function. Comp Clin Pathol. 2016;25(4):733-741. doi: 10.1007/s00580-016-2257-6

Shaaban MT, Ghaly MF, Fahmi SM. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silvernanoparticles against multidrug-resistant bacteria. J Basic Microbiol. 2021;61(6):557-568. doi: 10.1002/jobm.202100061, PMID 33871873

El-Demerdash E. Anti-inflammatory and antifibrotic effects of methyl palmitate. Toxicol Appl Pharmacol. 2011;254(3):238-244. doi: 10.1016/j.taap.2011.04.016, PMID 21575650

Willits CO, Ricciuti C, Knight HB, Swern D. Polarographic studies of oxygen-containing organic compounds. Anal Chem. 1952;24(5):785-790. doi: 10.1021/ac60065a007

Hasan MM, Al Mahmud MR, Islam MG. GC-MS analysis of bio-active compounds in ethanol extract of Putranjiva Roxburghii Wall. Fruit peel. Pharmacogn J. 2019;11(1):146-149.

Iijima H, Kasai N, Chiku H, Murakami S, Sugawara F, Sakaguchi K, et al. The inhibitory action of long-chain fatty acids on the DNA binding activity of p53. Lipids. 2006;41(6):521-527. doi: 10.1007/s11745-006- 5000-2, PMID 16981429

Dauda KR, Nvau JB, Chindo IY. GC-MS and FT-IR analysis of methanol crude extract of Cyathula prostrata Linn blume. J Pharmacogn Phytochem. 2017;6(5):1518-1520.

Anuradha S, Saya T, Varsha G, Pankaj J, Tapan K, Rashmi T. FT-IR, GC-MS, and HPLC profiling of the bioactive constituents of ethyl acetate fraction of Eichhornia crassipes as a hepatoprotectant. Lett Appl Nanobiosci. 2023;4(12):96.

Taiwo FO, Obafemi CA, Obuotor EM, Olawuni IJ. Design, synthesis and biological activities of some phthalimides derivatives. Curr Appl Sci Technol. 2021;40(33):50-56. doi: 10.9734/cjast/2021/v40i3331563

Zhai Y, Pang Y. Systemic and ovarian inflammation in women with polycystic ovary syndrome. J Reprod Immunol. 2022;151:103628. doi: 10.1016/j.jri.2022.103628, PMID 35472833

Dey R, Bhattacharya K, Basak AK, Paul N, Bandyopadhyay R, Chaudhuri GR, et al. Inflammatory perspectives of polycystic ovary syndrome: Role of specific mediators and markers. Middle East Fertil Soc J. 2023;28(1):33. doi: 10.1186/s43043-023-00158-2

Rodriguez Paris V, Bertoldo MJ. The mechanism of androgen actions in PCOS etiology. Med Sci (Basel). 2019;7(9):89. doi: 10.3390/ medsci7090089, PMID 31466345

Yusuf AN, Amri MF, Ugusman A, Hamid AA, Wahab NA, Mokhtar MH. Hyperandrogenism and its possible effects on endometrial receptivity: A review. Int J Mol Sci. 2023 Jul 27;24(15):12026. doi: 10.3390/ ijms241512026, PMID 37569402

Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi: 10.1038/srep42717, PMID 28256516

Jeya Preethi S, Sharmila P, Sangeetha K, Ponmurugan P. Phytochemical characterization, in vitro and in silico studies on therapeutic potential of edible and wild mushrooms. Asian J Pharm Clin Res. 2025;18:68-80.

Aiswariya, Suma BV, Satya MS. Molecular docking and ADMET studies of benzotriazole derivatives tethered with isoniazid for antifungal activity. Int J Curr Pharm Res. 2022;14(4):78-80.

Groth SW. Adiponectin and polycystic ovary syndrome. Biol Res Nurs. 2010;12(1):62-72. doi: 10.1177/1099800410371824, PMID 20498127

Shabalala SC, Dludla PV, Mabasa L, Kappo AP, Basson AK, Pheiffer C, et al. The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed Pharmacother. 2020 Nov;131:110785. doi: 10.1016/j.biopha.2020.110785, PMID 33152943

Ahmed HH, Salem AM, Mohamed MR, Shahat AA, Khalil WK, Mohamed SH. Experimental evidences for the promising therapeutic role of Vitis vinifera seed extract against nonalcoholic steatohepatitis. Int J Pharm Pharm Sci. 2015;7(2):417-424.

Published

07-06-2025

How to Cite

MERLIN MONISHA M, and PRAKASH M. “TARGETING POLYCYSTIC OVARIAN SYNDROME INFLAMMATION: DOCKING AND PHYTOCHEMICAL PROFILING OF ANTI-INFLAMMATORY COMPOUNDS IN LEONOTIS NEPETIFOLIA”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 6, June 2025, pp. 168-75, doi:10.22159/ajpcr.2025v18i6.54487.

Issue

Section

Original Article(s)