IDENTIFICATION OF MOLECULES AND GAS CHROMATOGRAPHY- MASS SPECTROMETRY EVALUATION OF SECONDARY METABOLITES DERIVED FROM THE ENDOPHYTE KUSHNERIA AVICENNIAE OBTAINED FROM AVICENNIA MARINA (FORSSK.) VIERH, AND A COMPARATIVE ASSESSMENT OF ANTIBACTERIAL PROPERTIES BETWEEN FLOWER AND ENDOPHYTE EXTRACTS AGAINST ESCHERICHIA COLI ATCC AND 25922 LISTERIA MONOCYTOGENESX` ATCC 19115
DOI:
https://doi.org/10.22159/ajpcr.2025v18i6.54575Keywords:
Avicennia marina (Forssk) Vierh, Kushneria avicenniae, Gas chromatography- mass spectrometry, Endophyte, Antibacterial activity.Abstract
Objectives: This research aimed to evaluate the antibacterial effects of solvent extracts obtained from the flowers of Avicennia marina (Forssk.) Vierh and its endophyte, Kushneria avicenniae, and to analyze the bioactive compounds produced by the endophyte.
Methods: This research gathered flowers from the mangrove species A. marina (Forssk) Vierh in Manakudi village, located in the Ramanathapuram district of Tamil Nadu. The flowers underwent surface sterilization, followed by the isolation of an endophyte using a Starch casein agar medium. The antibacterial properties of various solvent extracts from the flower and its endophyte were evaluated against Listeria monocytogens ATCC 19115 and Escherichia coli ATCC 25922 using the well diffusion method. The isolated endophyte was identified through genotypic methods, and gas chromatography-mass spectrometry was employed to analyze the bioactive compounds produced by this endophyte.
Results: The different solvent extracts of the flower of the mangrove A. marina (Forssk) Vierh showed no inhibition zone for the pathogens, and the extract of the bacteria showed an inhibition zone of 11 mm for E. coli ATCC 25922 and 12 mm for L. monocytogenes ATCC 19115. The endophyte was identified as K. avicenniae. The gas chromatography- mass spectrometry analysis detected the presence of nearly 40 potential bioactive compounds.
Conclusion: This study emphasised the importance of exploring the mangrove ecosystem and its relatively understudied endophytes, capable of producing secondary metabolites with distinctive features and bioactivities.
Downloads
References
Teresia NW, Huxley MM, Carren MB, Suleiman SM, Samuel MM, Cromwell MK. Isolation and morphological characterisation of endophytic fungi isolated from mangrove plants along the Kenyan coastline. Afr J Microbiol Res. 2020 Oct 31;14(10):594-607.
Al-Mur BA. Biological activities of Avicennia marina roots and leaves regarding their chemical constituents. Arab J Sci Eng. 2021 Jun;46(6):5407-19.
Lang T, Tang Y, Tam NF, Gan K, Wu J, Wu W, et al. Microcosm study on cold adaptation and recovery of an exotic mangrove plant, Laguncularia racemosa in China. Mar Environ Res. 2022 Apr 1;176:105611.
Lalitha P, Parthiban A, Sachithanandam V, Purvaja R, Ramesh R. Antibacterial and antioxidant potential of GC-MS analysis of crude ethyl acetate extract from the tropical mangrove plant Avicennia officinalis L. S Afr J Bot. 2021 Nov 1;142:149-55.
Kandasamy K, Rajendran N, Balakrishnan B, Thiruganasambandam R, Narayanasamy R. Carbon sequestration and storage in planted mangrove stands of Avicennia marina. Reg Stud Mar Sci. 2021 Mar 1;43:101701.
Rajivgandhi G, Chelliah CK, Murugan M, Ramachandran G, Chackaravarthi G, Maruthupandy M, et al. Discovery of secondary metabolites from Avicennia marina to inhibit the anti-oxidant and anti-biofilm activities of biofilm forming bacteria. J King Saud Univ Sci. 2024 Jan 1;36(1):102979.
Janarthine SS, Eganathan P, Balasubramanian T, Vijayalakshmi S. Endophytic bacteria isolated from the pneumatophores of Avicennia marina.
Sanchez-Porro C, De la Haba RR, Soto-Ramirez N, Márquez MC, Montalvo-Rodriguez R, Ventosa A. Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomona sindalinina as Kushneria indalinina comb. nov. and of Halomona savicenniae as Kushneria avicenniae comb. nov. Int J Syst Evolut Microbiol. 2009 Feb;59(2):397-405.
Du GX, Qu LY, Hong XG, Li CH, Ding DW, Gao P, et al. Kushneria
phosphatilytica sp. nov., a phosphate-solubilizing bacterium isolated from a solar saltern. Int J Syst Evolut Microbiol. 2021 Feb;71(2):004619.
Soto-Ramírez N, Sanchez-Porro C, Rosas S, Gonzalez W, Quinones M, Ventosa A, Montalvo-Rodríguez R. Halomonas avicenniae sp. nov., isolated from the salty leaves of the black mangrove Avicennia germinans in Puerto Rico. Int J Syst Evolut Microbiol. 2007;57(5):900-5.
Navarro-Torre S, Carro L, Rodríguez-Llorente ID, Pajuelo E, Caviedes MÁ, Igual JM, et al. Kushneria phyllosphaerae sp. nov. and Kushneria endophytica sp. nov., plant growth promoting endophytes isolated from the halophyte plant Arthrocnemum macrostachyum. Int J Syst Evolut Microbiol. 2018 Sep;68(9):2800-6.
Cabrera A, Aguilera M, Fuentes S, Incerti C, Russell NJ, Ramos- Cormenzana A, et al. Halomonas indalinina sp. nov., a moderately halophilic bacterium isolated from a solar saltern in Cabo de Gata, Almería, southern Spain. Int J Syst Evolut Microbiol. 2007 Feb;57(2):376-80.
Yoon JH, Choi SH, Lee KC, Kho YH, Kang KH, Park YH. Halomonas marisflavae sp. nov., a halophilic bacterium isolated from the Yellow Sea in Korea. Int J Syst Evolut Microbiol. 2001 May;51(3):1171-7.
Bangash A, Ahmed I, Abbas S, Kudo T, Shahzad A, Fujiwara T, et al. Kushneria pakistanensis sp. nov., a novel moderately halophilic bacterium isolated from rhizosphere of a plant (Saccharum spontaneum) growing in salt mines of the Karak area in Pakistan. Antonie Van Leeuwenhoek. 2015 Apr;107:991-1000.
Yun JH, Park SK, Lee JY, Jung MJ, Bae JW. Kushneria konosiri sp. nov., isolated from the Korean salt-fermented seafood Daemi-jeot. Int J Syst Evolut Microbiol. 2017 Sep;67(9):3576-82.
Zou Z, Wang G. Kushneria sinocarnis sp. nov., a moderately halophilic bacterium isolated from a Chinese traditional cured meat. Int J Syst Evolut Microbiol. 2010 Aug;60(8):1881-6.
Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, et al. Geneious v5.1; 2010. Available from: https://www.geneious.com
Cappuccino JP. Agar Plate Sensitivity Method. Microbial A Laboratory Manual. California: The Benjamin Cummings Publishing; 1986. p. 260-1.
Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evolut. 1987 Jul 1;4(4):406-25.
Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985 Jul 1;39(4):783-91.
Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci. 2004 Jul 27;101(30):11030-5.
Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evolut. 2021 Jul 1;38(7):3022-7.
Roy A, Chaudhuri BN, Guchhait P, Das S. Antimicrobial activity of Avicennia marina flowers. EAS J Biotechnol Genet. 2023;7286(3):34-9.
Singh T, Wahla V. GC-MS analysis of antifungal compounds derived from soil actinobacteria. Int Res J Pharm. 2018;9(2):78-84.
Bharose A, Gajera HP. Antifungal activity and metabolites study of Bacillus strain against aflatoxin producing Aspergillus. J Appl Microbiol Biochem. 2018;2(2):1-8.
Sahu MK, Suthakaran S, Ghosh SC, Singh D, Das A, Jha H. Anticancer activity of secondary metabolite isolated from the rhizospheric fungus Fusarium oxysporum isolate-ABRF1, 2-propenoic acid, pentadecyl ester. Asian J Natural Product Biochem. 2023;21(2):.
Manjunatha N, Pokhare SS, Agarrwal R, Singh NV, Sharma J, Harsur MM, et al. Possible biocontrol of bacterial blight in pomegranate using native endophytic Bacillus spp. under field conditions. Front Microbiol. 2024 Dec 11;15:1491124.
Awan ZA, Shoaib A, Schenk PM, Ahmad A, Alansi S, Paray BA. Antifungal potential of volatiles produced by Bacillus subtilis BS-01 against Alternaria solani in Solanum lycopersicum. Front Plant Sci. 2023 Jan 26;13:1089562.
Ser HL, Palanisamy UD, Yin WF, Abd Malek SN, Chan KG, Goh BH, et al. Presence of antioxidative agent, Pyrrolo[1,2-a] pyrazine-1,4- dione, hexahydro-in newly isolated Streptomyces mangrovisoli sp. nov. Front Microbiol. 2015 Aug 20;6:854.
Li Z, Lin S, Liu X, Tan J, Pan J, Yang H. A freshwater bacterial strain, Shewanella sp. Lzh-2, isolated from Lake Taihu and its two algicidal active substances, hexahydropyrrolo [1, 2-a] pyrazine-1, 4-dione and 2, 3-indolinedione. Appl Microbiol Biotechnol. 2014 May;98:4737-48.
Sanjenbam P, Vinay Gopal J, Kannabiran K. Isolation and identification of anticandidal compound from Streptomyces sp. VITPK9. Appl Biochem Microbiol. 2014 Sep;50:492-9.
Smith DE, Firth CR, Mighall TM, Teasdale PA. Deglaciation and neotectonics in SE Raasay, Scottish Inner Hebrides. Scott J Geol. 2021 Nov 1;57(2): sjg2021-006.
Kaneko H, Namihira M, Yamamoto S, Numata N, Hyodo K. Oral administration of cyclic glycyl-proline facilitates task learning in a rat stroke model. Behav Brain Res. 2022 Jan 24;417:113561.
Devi E, Bharathidasan R, Dharsini PP. Antioxidant properties and bioactivity of Streptomyces albus DR57. J Pure Appl Microbiol. 2025 Mar 1;19(1):707-13.
Eipert M, Maichle-Mössmer C, Maier ME. Use of epoxidation and epoxide opening reactions for the synthesis of highly functionalized 1-oxaspiro [4.5] decan-2-ones and related compounds. Tetrahedron. 2003 Sep 29;59(40):7949-60.
Yan PS, Song Y, Sakuno E, Nakajima H, Nakagawa H, Yabe K. Cyclo (L-leucyl-L-prolyl) produced by achromobacterxylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl Environ Microbiol. 2004 Dec;70(12):7466-73.
Kiran GS, Priyadharsini S, Sajayan A, Ravindran A, Selvin J. An antibiotic agent pyrrolo [1, 2-a] pyrazine-1, 4-dione, hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv. 2018;8(32):17837-46.
Saleem AA, Balakrishnan G, Nandhagopal M, Manivannan N. Secondary metabolites of Halobacillus sp.: Antimicrobial and antioxidant activity, biological compatibility, and gas chromatography-mass spectrometry (GC-MS) analysis. Cureus. 2024 Aug 19;16(8):e67246.
Singh VK, Mishra A, Jha B. 3-Benzyl-hexahydro-pyrrolo [1, 2-a] pyrazine-1, 4-dione extracted from Exiguobacterium indicum showed anti-biofilm activity against Pseudomonas aeruginosa by attenuating quorum sensing. Front Microbiol. 2019 Jun 7;10:1269.
Sharma N, Koul M, Joshi NC, Dufossé L, Mishra A. Fungal-bacterial combinations in plant health under stress: Physiological and biochemical characteristics of the filamentous fungus Serendipita indica and the Actinobacterium Zhihengliuella sp. ISTPL4 under in vitro arsenic stress. Microorganisms. 2024 Feb 17;12(2):405.
Senthilkumar N, Shalini TB, Lenora LM, Divya G. Pterocarpus indicus Willd: A lesser-known tree species of medicinal importance. Asian J Res Bot. 2020;3(4):20-32.
Huang L, Zhu X, Zhou S, Cheng Z, Shi K, Zhang C, et al. Phthalic acid esters: Natural sources and biological activities. Toxins. 2021 Jul 16;13(7):495.
Cherewyk JE, Blakley BR, Al-Dissi AN. The C-8-S-isomers of ergot alkaloids-a review of biological and analytical aspects. Mycotoxin Res. 2024 Feb;40(1):1-17.
Uddin SJ, Grice D, Tiralongo E. Evaluation of cytotoxic activity of patriscabratine, tetracosane and various flavonoids isolated from the Bangladeshi medicinal plant Acrostichumaureum. Pharm Biol. 2012 Oct 1;50(10):1276-80.
Carev I, Gelemanović A, Glumac M, Tutek K, Dželalija M, Paiardini A, Prosseda G. Centaurea triumfetii essential oil chemical composition, comparative analysis, and antimicrobial activity of selected compounds. Sci Rep. 2023 May 8;13(1):7475.
Wei C, Zhou S, Shi K, Zhang C, Shao H. Chemical profile and phytotoxic action of Onopordum acanthium essential oil. Sci Rep. 2020 Aug 11;10(1):13568.
Rhetso T, Shubharani R, Roopa MS, Sivaram V. Chemical constituents, antioxidant, and antimicrobial activity of Allium chinense G. Don. Futur J Pharm Sci. 2020 Dec;6:102.
Aadesariya MK, Ram VR, Dave PN. Phytochemical analysis of leaves extract of abutilon pannosuminn-butanolfor its bioactive components through gas chromatography-mass spectrometry (GC-MS). Phytochem Anal. 2018 Sep;8(9):894-9.
Hadi MY, Mohammed GJ, Hameed IH. Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography-mass spectrometry. J Pharmacogn Phytother. 2016 Feb 29;8(2):8-24.
Balachandran A, Choi SB, Beata MM, Małgorzata J, Froemming GR, Lavilla CA Jr., et al. Antioxidant, wound healing potential and in silico assessment of naringin, eicosane and octacosane. Molecules. 2023 Jan 20;28(3):1043.
Taha H, Awang-Jamil ZU, Aminuddin MF, Basri AM, Zaidi BQ, Ahmad N. Phytochemicals and antimicrobial analysis of selected medicinal plants from Brunei Darussalam. Biodivers J Biol Divers. 2021 Jan 13;22(2):601-6.
Nayak BU, Roy S, Roy M, Mitra A, Karak K. Phytochemical, antioxidant and antimicrobial screening of Suaeda maritima L (Dumort) against human pathogens and multiple drug resistant bacteria. Indian J Pharm Sci. 2018 Jan 1;80(1):26-35.
Alqahtani SS, Moni SS, Sultan MH, Bakkari MA, Madkhali OA, Alshahrani S, et al. Potential bioactive secondary metabolites of Actinomycetes sp. isolated from rocky soils of the heritage village Rijal Alma, Saudi Arabia. Arab J Chem. 2022 May 1;15(5):103793.
Alghamdi A, Alshehri W, Sajer B, Ashkan M, Ashy R, Gashgari R, et al. Biological activities and GC‐MS analysis of Aloe vera and Opuntia ficus-indica extracts. J Chem. 2023;2023(1):6504505.
Japeth OO, Josphat MC, John VM. Chemical composition and larvicidal activity of Zanthoxylum gilletii essential oil against Anopheles gambiae. Afr J Biotechnol. 2014;13(21):.
Javed MR, Salman M, Tariq A, Tawab A, Zahoor MK, Naheed S, et al. The antibacterial and larvicidal potential of bis-(2-ethylhexyl) phthalate from Lactiplantibacillus plantarum. Molecules. 2022 Oct 25;27(21):7220.
Sharma DU, Rani RE, Chaturvedi MO, Yadav JP. Antibacterial capacity and identification of bioactive compounds by GCMS of Allium cepa. Int J Pharm Pharm Sci. 2018 Feb;10(2):116.
Perumal K, Seenuvasan J, Nandhagopal M, Manivannan N. Antimicrobial properties of secondary metabolites produced by Halomonas sp.: A halophilic bacterium. Cureus. 2024 Sep 18;16(9):e69633.
Huang PH, Duan XB, Tang ZZ, Zou ZX, Song WM, Gao G, et al. Betulinaldehyde exhibits effective anti-tumor effects in A549 cells by regulating intracellular autophagy. Sci Rep. 2023 Jan 13; 13(1):743.
Sharma N, Palia P, Chaudhary A, Verma K, Kumar I. A review on pharmacological activities of lupeol and its triterpene derivatives. J Drug Deliv Therapeut. 2020 Sep 1;10(5):325-32.
Jose B, Reddy LJ. Evaluation of antibacterial activity of the leaf and flower essential oils of Gliricidia sepium from south India. Int J Appl Pharm. 2010;2(2):20-2.
Published
How to Cite
Issue
Section
Copyright (c) 2025 M.Asha Selva Malar, Dr

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.