ANTI-PROLIFERATIVE EFFECTS OF CU(PHEN)(C-DIMETHYLGLYCINE)NO3 ON HT-29 AND A2780 CANCER CELL LINES: A POTENTIAL CHEMOTHERAPEUTIC APPROACH
DOI:
https://doi.org/10.22159/ajpcr.2025v18i6.54576Keywords:
Copper(II) Complex, Anti-Proliferative Activity, Cancer Cell Lines, IC50, Apoptosis AssayAbstract
Objectives: This study aimed to evaluate the in vitro anti-proliferative properties of Cu(Phen)(C-dimethylglycine)NO3 on human cancer cell lines. Specifically, the study investigated its effects on the proliferation of colorectal carcinoma (HT-29) and ovarian carcinoma (A2780) cells, determined the IC50 values, measured caspase-9 activity, and assessed the degree of DNA fragmentation.
Methods: The anti-proliferative and apoptotic effects of standardized Cu(phen)(C-dimethylglycine)NO3 were evaluated at varying concentrations (1, 2, 5, 10, 15, and 20 µM) over 24, 48, and 72 hours. Cell viability was assessed using the MTT assay, while caspase-9 activity was measured using fluorometric assay kits and a fluorophotometer. DNA fragmentation was analyzed using the Cell Death Detection ELISA Plus kit.
Results: The results demonstrated a time- and concentration-dependent reduction in cell viability for both cell lines. Notably, A2780 cells exhibited a lower IC50 (1.76 ± 0.406 µM at 72 hours) compared to HT-29 cells (7.03 ± 0.635 µM), indicating greater sensitivity. However, the compound did not significantly alter caspase-9 expression nor induce DNA fragmentation when compared to the control.
Conclusion: Cu(phen)(C-dimethylglycine)NO3 exerts a significant anti-proliferative effect without triggering apoptosis, suggesting a non-apoptotic mechanism of cytotoxicity that warrants further investigation.
Downloads
References
Tisato F, Marzano C, Porchia M, Pellei M, Santini C. Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev. 2010;30(4):708-49. doi: 10.1002/med.20174, PMID 19626597
Ji P, Wang P, Chen H, Xu Y, Ge J, Tian Z, et al. Potential of copper and copper compounds for anticancer applications. Pharmaceuticals (Basel). 2023;16(2):234. doi: 10.3390/ph16020234, PMID 37259382
Tisato F, Marzano C, Porchia M, Pellei M, Santini C. Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev. 2020;40(1):111-33. doi: 10.1002/med.21612
Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in copper complexes as anticancer agents. Chem Rev. 2021;121(2):813-57. doi: 10.1021/acs.chemrev.0c00230.
Suntharalingam K, Tang LJ, Lu YJ. Copper-based metallodrugs: Strategies to target cancer cells. Front Chem. 2023;11:1156275. doi: 10.3389/fchem.2023.1156275
Weder JE, Dillon CT, Hambley TW, Kennedy BJ, Lay PA, Biffin JR, et al. Copper complexes of non-steroidal anti-inflammatory drugs: An opportunity yet to be realized. Coord Chem Rev. 2002;232(1-2):95- 126. doi: 10.1016/S0010-8545(02)00086-3
Gonzalez-Vilchez F, Vilaplana RA. Copper complexes as potential anti-inflammatory and anticancer agents. J Inorg Biochem. 2005;99(4):771- 9. doi: 10.1016/j.jinorgbio.2004.12.009
Noyce JO, Michels H, Keevil CW. Inactivation of influenza A virus on copper versus stainless steel surfaces. Appl Environ Microbiol. 2007;73(8):2748-50. doi: 10.1128/AEM.01139-06, PMID 17259354
Kubo AL, Rausalu K, Savest N, Žusinaite E, Vasiliev G, Viirsalu M, et al. Antibacterial and antiviral effects of ag, Cu and Zn metals, respective nanoparticles and filter materials thereof against coronavirus SARS-CoV-2 and influenza A virus. Pharmaceutics. 2022;14(12):2549. doi: 10.3390/pharmaceutics14122549, PMID 36559043
Borkow G, Gabbay J. Putting copper into action: Copper-impregnated products with potent biocidal activities. FASEB J. 2004;18(14):1728- 30. doi: 10.1096/fj.04-2029fje, PMID 15345689
Linder MC. The relationship of copper to DNA damage and damage prevention in humans. Mutat Res. 2012;733(1-2):83-91. doi: 10.1016/j. mrfmmm.2012.03.010, PMID 23463874
Molinaro C, Martoriati A, Pelinski L, Cailliau K. Copper complexes as anticancer agents targeting topoisomerases I and II. Cancers (Basel).
;12(10):2863. doi: 10.3390/cancers12102863, PMID 33027952
Wojtowicz K, Nowicki M. The characterization of the sensitive ovarian cancer cell lines A2780 and W1 in response to ovarian CAFs. Biochem Biophys Res Commun. 2023;662:1-7. doi: 10.1016/j.bbrc.2023.04.059, PMID 37088000
Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 2021;22(23):12827. doi: 10.3390/ ijms222312827, PMID 34884632
Chiong HS, Yong YK, Ahmad Z, Sulaiman MR, Zakaria ZA, Yuen KH, et al. Cytoprotective and enhanced anti-inflammatory activities of liposomal piroxicam formulation in lipopolysaccharide-stimulated RAW 264.7 macrophages. Int J Nanomedicine. 2013;8(8):1245-55. doi: 10.2147/IJN.S42801, PMID 23569374
Seng HL, Tan KW, Maah MJ, Tan WT, Hamada H, Chikira M, et al. Copper(II) complexes of methylated glycine derivatives: Effect of methyl substituent on their DNA binding and nucleolytic property. Polyhedron. 2009;28(11):2219-27. doi: 10.1016/j.poly.2009.03.022
Gao L, Zhang A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol. 2023;14:1236063. doi: 10.3389/fimmu.2023.1236063, PMID 37600774
AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279-90. doi: 10.1021/nn800596w, PMID 19236062
Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391(6662):43-50. doi: 10.1038/34112, PMID 9422506
Raikar PR, Dandagi PM. Funtionalized polymeric nanoparticles: A novel targeted approach for oncology care. Int J Appl Pharm. 2021;13(6):1-18. doi: 10.22159/ijap.2021v13i6.42714
Ahmed T, Ramasamy K, Ramya S. An in silico and in vitro evaluation of cytotoxicity, apoptotic activityand gene expression modulation of sarsasapogenin in human colorectal cancer cell lines HT-29. Int J Appl Pharm. 2024;16(4):84-91.
Mocellin S, Rossi CR, Pilati P, Nitti D. Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 2005;16(1):35- 53. doi: 10.1016/j.cytogfr.2004.11.001, PMID 15733831
Bhutadiya VL, Mistry KN. A review on bioactive phytochemicals and It’s mechanism on cancer treatment and prevention by targeting Multiple cellular Signaling pathways. Int J Pharm Pharm Sci. 2021;13(12):15-9. doi: 10.22159/ijpps.2021v13i12.42798
Published
How to Cite
Issue
Section
Copyright (c) 2025 Nurfarahdilla , Dr Ng, Dr Fong, Dr Yong, Muhammad Nazrul Hakim, Dr Ahmad

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.