DESIGN OF EXPERIMENT-BASED CANDESARTAN CILEXETIL NANOCRYSTALS LOADED SOLID DISPERSION FOR ORAL DRUG DELIVERY SYSTEM: OPTIMIZATION, IN VITRO/IN VIVO EVALUATION

Authors

  • SONALI VIJAYKUMAR MAGDUM Department of Pharmaceutics, Dr. J. J. Magdum Pharmacy College, Jaysingpur, Maharashtra, India
  • PRAMODKUMAR JAYKUMAR SHIROTE Department of Pharmaceutical Chemistry, Dr. Bapuji Salunkhe Institute of Pharmacy, Miraj, Maharashtra, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i8.54604

Keywords:

Candesartan cilexetil, Nanocrystal, Solid dispersion, Eudragit RLPO, Oral bioavailability

Abstract

Objective: The current study aimed to develop and characterize a nanocrystal-based solid dispersion of Candesartan Cilexetil (CC) to improve its solubility and bioavailability.

Methods: CC-loaded nanosuspension was prepared using the solvent precipitation method, employing Eudragit RLPO, and polyvinyl alcohol as a stabilizer. The resulting nano-sized lyophilized powder was then incorporated into a solid dispersion using the kneading method with crospovidone as a super-disintegrant. A 32 factorial design was used for optimization, with the amount of nanosuspension powder (X1) and concentration of superdisintegrant agent (X2) as independent variables. Evaluations included drug content (%), drug release (DR %), zeta potential (ZP), and other characterization techniques.

Results: The optimized formulation, CCSD9, exhibited a particle size of 264 nm, a ZP of 20.32 mV, a DR rate of 99.45%, and a polydispersity index (PDI) of 0.365. Transmission electron microscopy analysis revealed drug nanocrystal agglomeration, possibly due to the water removal process. Differential scanning calorimetry analysis indicated a minor change in crystallinity, likely due to lactose presence, and confirmed no significant drug-excipient interaction. A 6-month stability trial was conducted.

Conclusion: The solvent precipitation method proved to be an efficient approach for developing CC nanocrystal-based solid dispersion with a lower particle size. The nanosizing technique successfully encapsulated CC within the polymer matrix, enhancing DR and stability.

Downloads

Download data is not yet available.

References

1. Aly UF, Sarhan HA, Monsef Ali TF, Sharkawy HA. Applying different techniques to improve the bioavailability of candesartan cilexetil antihypertensive drug. Drug Des Devel Ther. 2020;14:1851-65. doi: 10.2147/DDDT.S248511

2. Al-Edresi S, Hamrah KA, Al-Shaibani A. Formulation and validation of candesartan cilexetil-loaded nanosuspension to enhance solubility. J Pharm. 2024;71:1-13. doi: 10.3897/pharmacia.71.e114943

3. Poudel S, Kim DW. Developing pH-modulated spray dried amorphous solid dispersion of candesartan cilexetil with enhanced in vitro and in vivo performance. Pharmaceutics. 2021;13(4):497. doi: 10.3390/ pharmaceutics13040497

4. Dudhipala N, Veerabrahma K. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: Characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Deliv. 2016;23(2):395-404. doi: 10.3109/10717544.2014.914986

5. Phalak SD, Bodke VI, Yadav RE, Pandav SA, Ranaware MA. A systematic review on nano drug delivery system: Solid lipid nanoparticles (SLN). Int J Curr Pharm Res. 2024;16(1):10-20. doi: 10.22159/ijcpr.2024v16i1.4020

6. Bhairav BA, Jagtap LR, Saudagar RB. Solubility and dissolution enhancement of Pioglitazone using solid dispersion technique. Int J Curr Pharm Res. 2017;9(5):186-93. doi: 10.22159/ijcpr.2017v9i5.22326

7. Gauniya AN, Mazumder RU, Pathak KA. Formulation, optimization and characterization of ziprasidone nanocrystals prepared by media milling technique. Int J Pharm Pharm Sci. 2015;7:146-50.

8. Surampalli G, Nanjwade BK, Patil PA, Chilla R. Novel tablet formulation of amorphous candesartan cilexetil solid dispersions involving P-gp inhibition for optimal drug delivery: In vitro and in vivo evaluation. Drug Deliv. 2016;23(7):2124-38. doi: 10.3109/10717544.2014.945017

9. Kamble SS, Gambhire MS, Gujar KN. Optimization and development of candesartan cilexetil loaded solid lipid nanoparticle for the treatment of hypertension. J Pharm Biosci. 2015;3:53-64.

10. Albaidhani SF, Hussein AA. Preparation and evaluation of solid supersaturable self-nanoemulsifying drug delivery system of candesartan cilexetil. J Pharm Sci Res. 2019;11(3):859-68.

11. Diwan R, Ravi PR, Pathare NS, Aggarwal V. Pharmacodynamic, pharmacokinetic and physical characterization of cilnidipine loaded solid lipid nanoparticles for oral delivery optimized using the principles of design of experiments. Colloids Surf B Biointerfaces. 2020;193:111073. doi: 10.1016/j.colsurfb.2020.111073

12. AboulFotouh K, Allam AA, El-Badry M, El-Sayed AM. Development and in vitro/in vivo performance of self-nanoemulsifying drug delivery systems loaded with candesartan cilexetil. Eur J Pharm Sci. 2017;109:503-13. doi: 10.1016/j.ejps.2017.09.001

13. Guan H, Wang M, Yu S, Wang C, Chen Q, Chen Y, et al. Candesartan cilexetil formulations in mesoporous silica: Preparation, enhanced dissolution in vitro, and oral bioavailability in vivo. J Pharm Sci. 2024;113(10):3045-53. doi: 10.1016/j.xphs.2024.07.007

14. Lokeshvar R, Ramaiyan V, Nithin V, Pavani S, Vinod Kumar T. Nanotechnology-driven therapeutics for liver cancer: Clinical applications and pharmaceutical insights. Asian J Pharm Clin Res. 2025;18(2):8-26. doi: 10.22159/ajpcr.2025v18i2.53429

15. Bisht T, Bolmal UB, Nainwal N. Formulation of candesartan cilexetil nanoparticles by ionotropic gelation method using ultrasonication. Indian J Pharm Educ Res. 2023;57(3):728-35.

16. Khanfar M, Al Taani BA, Mohammad E. Enhancement of dissolution and stability of candesartan cilexetil-loaded silica polymers. Int J Appl Pharm. 2019;11(2):64-70. doi: 10.22159/ijap.2019v11i2.30411

17. Fouad AG, Ali MR, Naguib DM, Farouk HO, Zanaty MI, El-Ela FI. Design, optimization, and in vivo evaluation of invasome-mediated candesartan for the control of diabetes-associated atherosclerosis. Drug Deliv Transl Res. 2024;14(2):474-90. doi: 10.3390/ph18010031

18. Yiyan MO, Jingmeng SU, Chenchen FA, Zhenzhen JI, Xin ZH, Weiyu ZH. Construction and characterization of candesartan cilexetil P123/F127 mixed micelle delivery system. Herald Med. 2022;41(12):1828-35. doi: 10.1080/03639045.2023.2293122

19. Mady OY, Abulmeaty MM, Donia AA, Al-Khureif AA, Al-Shoubki AA, Abudawood M, et al. Formulation and bioavailability of novel mucoadhesive buccal films for candesartan cilexetil in rats. Membranes. 2021;11(9):659. doi: 10.3390/membranes11090659

20. Awadeen RH, Boughdady MF, Meshali MM. Quality by designapproach for preparation of zolmitriptan/chitosan nanostructured lipid carrier particles-formulation and pharmacodynamic assessment. Int J Nanomedicine. 2020;15:8553-68. doi: 10.2147/IJN.S274352

21. Jain S, Patel K, Arora S, Reddy VA, Dora CP. Formulation, optimization, and in vitro-in vivo evaluation of olmesartan medoxomil nanocrystals. Drug Deliv Transl Res. 2017;7(2):292-303. doi: 10.1007/s13346-016- 0355-2

22. Zafar A, Alruwaili NK, Imam SS, Alsaidan OA, Alharbi KS, Yasir M, et al. Formulation of chitosan-coated piperine NLCs: Optimization, in vitro characterization, and in vivo preclinical assessment. AAPS PharmSciTech. 2021;22(7):231. doi: 10.1208/s12249-021-02098-4

23. Yuksel N, Bayindir ZS, Aksakal E, Ozcelikay AT. In situ niosome forming maltodextrin proniosomes of candesartan cilexetil: In vitro and in vivo evaluations. Int J Biol Macromol. 2016;82:453-63. doi: 10.1016/j.ijbiomac.2015.10.019

24. Harish V, Tewari D, Mohd S, Govindaiah P, Babu MR, Kumar R, et al. Quality by design-based formulation of xanthohumol loaded solid lipid nanoparticles with improved bioavailability and anticancer effect against PC-3 cells. Pharmaceutics. 2022;14(11):2403. doi: 10.3390/ pharmaceutics14112403

25. Madan JR, Patil K, Awasthi R, Dua K. Formulation and evaluation of solid self-microemulsifying drug delivery system for azilsartan medoxomil. Int J Polym Mater Polym Biomater. 2021;70(2):100-16. doi: 10.1080/00914037.2019.1695206

26. Sharma S, Sharma JB, Bhatt S, Kumar M. Optimization and fabrication of curcumin loaded solid lipid nanoparticles using box-Behnken design for nasal delivery. Nanosci Nanotechnol Asia. 2022;12(6):7-18. doi: 10.2174/2210681213666221103151333

27. El-Housiny S, Fouad AG, El-Bakry R, Zaki RM, Afzal O, El-Ela FI, et al. In vitro and in vivo characterization of nasal pH-responsive in-situ hydrogel of candesartan-loaded invasomes as a potential stroke treatment. Drug Deliv Transl Res. 2024;15:1626-45.doi: 10.1007/ s13346-024-01700-z

28. Abla KK, Mneimneh AT, Allam AN, Mehanna MM. Application of Box-Behnken design in the preparation, optimization, and in-vivo pharmacokinetic evaluation of oral tadalafil-loaded niosomal film. Pharmaceutics. 2023;15(1):173. doi: 10.3390/pharmaceutics15010173

29. Reddy KT, Dharmamoorthy G, Vasavi Devi D, Vidiyala N, Bagade OM, Elumalai S, et al. Phytoconstituent based green synthesis of nanoparticles: Sources and biomedical applications in cancer therapy. Asian J. Green Chem. 2025;9(3):329-54. doi: 10.48309/ ajgc.2025.501113.1669

30. Jain S, Reddy VA, Arora S, Patel K. Development of surface stabilized candesartan cilexetil nanocrystals with enhanced dissolution rate, permeation rate across CaCo-2, and oral bioavailability. Drug Deliv Transl Res. 2016;6(5):498-510. doi: 10.1007/s13346-016-0297-8

31. Detroja C, Chavhan S, Sawant K. Enhanced antihypertensive activity of candesartan cilexetil nanosuspension: Formulation, characterization and pharmacodynamic study. Scientia pharmaceutica. 2011;79(3):635- 52. DOI: 10.3797/scipharm.1103-17.

32. Amer AM, Allam AN, Abdallah OY. Preparation, characterization and ex vivo-in vivo assessment of candesartan cilexetil nanocrystals via solid dispersion technique using an alkaline esterase activator carrier. Drug Dev Ind Pharm. 2019;45(7):1140-8. doi: 10.1080/03639045.2019.1600533

33. Anwar W, Dawaba HM, Afouna MI, Samy AM. Screening study for formulation variables in preparation and characterization of candesartan cilexetil loaded nanostructured lipid carriers. Univ J Pharm Res. 2019;4(6):1-24.

34. Sharma M, Singh B. Formulation and evaluation of self-emulsifying drug delivery systems for candesartan cilexetil. Int J Pharm Sci Nanotechnol. 2022;15(2):5844-54. doi: 10.37285/ijpsn.2022.15.2.3

35. Zewail MB, El-Gizawy SA, Osman MA, Haggag YA. Preparation and in vitro characterization of a novel self-nano emulsifying drug delivery system for a fixed-dose combination of candesartan cilexetil and hydrochlorothiazide. J Drug Deliv Sci Technol. 2021;61:102320. doi: 10.1016/j.jddst.2021.102320

36. Ali IS, Sajad UA, Abdul Rasool BK. Solid dispersion systems for enhanced dissolution of poorly water-soluble candesartan cilexetil: In vitro evaluation and simulated pharmacokinetics studies. PLoS One. 2024;19(6):e0303900.

37. Nekkanti V, Karatgi P, Prabhu R, Pillai R. Solid self-microemulsifying formulation for candesartan cilexetil. Aaps Pharmscitech. 2010;11:9- 17. doi: 10.1208/s12249-009-9347-6.

38. Sezgin-Bayindir Z, Antep MN, Yuksel N. Development and characterization of mixed niosomes for oral delivery using candesartan cilexetil as a model poorly water-soluble drug. AAPS pharmscitech. 2015;16:108-17. doi: 10.1208/s12249-014-0213-9.

39. Ali HH, Hussein AA. Oral nanoemulsions of candesartan cilexetil: Formulation, characterization and in vitro drug release studies. AAPS Open. 2017;3(4):4.

40. Devi AS, Pinnika A, Divya P. Formulation and evaluation of candesartan cilexetil transdermal proniosomal gel. J Drug Deliv Ther. 2014;4(2):90-8. doi: 10.22270/jddt.v4i2.813

41. Mauludin R, Müller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm. 2009;370(1-2):202-9. doi: 10.1016/j.ijpharm.2008.11.029

42. Ige PP, Baria RK, Gattani SG. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Colloids Surf B Biointerfaces. 2013;108:366-73. doi: 10.1016/j.colsurfb.2013.02.043

43. Sharma OP, Patel V, Mehta T. Design of experiment approach in development of febuxostat nanocrystal: Application of soluplus® as stabilizer. Powder Technol. 2016;302:396-405. doi: 10.1016/j. powtec.2016.09.004

44. Qushawy M, Nasr AL. Solid lipid nanoparticles (SLNs) as nano drug delivery carriers: Preparation, characterization and application. Int J App Pharm. 2020;12(1):1-9. doi: 10.22159/ijap.2020v12i1.35312

45. Chaudhari PD, Desai US. Formulation and evaluation of niosomal in situ gel of prednisolone sodium phosphate for ocular drug delivery. Int J App Pharm. 2019;11(2):97-116. doi: 10.22159/ ijap.2019v11i2.30667

46. Aparna C, Anusha M, Manisha B. Enhancement of dissolution of candesartan cilexetil. Asian J Pharm Clin Res. 2023;16(3):148-51.

47. Koradia KD, Parikh RH, Koradia HD. Albendazole nanocrystals: Optimization, spectroscopic, thermal and anthelmintic studies. J Drug Deliv Sci Technol. 2018;43:369-78.doi: 10.1016/j.jddst.2017.11.003

48. Vardaka E, Kachrimanis K. Nanocrystal formulations of mebendazole employing quality by design and molecular level insights by atomistic simulations. Drug Dev Ind Pharm. 2024;89:256-301. doi: 10.1080/03639045.2024.2398597

49. Deepthi VV, Swathi N, Gollu G, Nalini M. Cramming on potato starch as a novel super-disintegrant for depiction and characterization of candesartan cilexetil fast dissolving tablet. Thai J Pharm Sci. 2021;45(2):143-7.

Published

07-08-2025

How to Cite

SONALI VIJAYKUMAR MAGDUM, and PRAMODKUMAR JAYKUMAR SHIROTE. “DESIGN OF EXPERIMENT-BASED CANDESARTAN CILEXETIL NANOCRYSTALS LOADED SOLID DISPERSION FOR ORAL DRUG DELIVERY SYSTEM: OPTIMIZATION, IN VITRO IN VIVO EVALUATION”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 8, Aug. 2025, pp. 226-35, doi:10.22159/ajpcr.2025v18i8.54604.

Issue

Section

Original Article(s)