PHYSICOCHEMICAL CHARACTERIZATION AND ANTIFUNGAL EFFICACY OF SILVER NANOPARTICLES AGAINST CANDIDA SPECIES

Authors

  • ARTI ZENDE Department of Biotechnology, Krishna Institute of Science and Technology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra, India. https://orcid.org/0009-0007-9579-9423
  • JAYANT PAWAR Department of Biotechnology, Krishna Institute of Science and Technology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra, India. https://orcid.org/0000-0002-6995-3534
  • CHITRA KHANWELKAR Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra, India
  • ROHAN S PHATAK Department of Pharmacognosy, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra, India. https://orcid.org/0000-0001-7900-0633
  • PRIYANKA BIRLA Centre for Materials for Electronics Technology, Pune, Maharashtra India. https://orcid.org/0009-0000-6392-0830
  • MANISH D SHIND Centre for Materials for Electronics Technology, Pune, Maharashtra India. https://orcid.org/0000-0003-4884-7553

DOI:

https://doi.org/10.22159/ajpcr.2025v18i6.54631

Keywords:

Silver nanoparticles, Candida species, Antifungal activity, Vulvovaginal candidiasis, Co-precipitation method

Abstract

Objective: This study aimed to evaluate the physicochemical properties of chemically synthesized silver nanoparticles (AgNPs) and assess their antifungal efficacy against Candida species.

Methods: AgNPs were synthesized using a co-precipitation method with silver nitrate and trisodium citrate and characterized via ultraviolet (UV)-Vis spectroscopy, X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). Antifungal activity was determined using the broth microdilution method in 96-well plates. Cytoplasmic leakage assays and FE-SEM imaging were performed to understand the nanoparticles’ mechanism of action.

Results: The UV-Vis spectrum showed a surface plasmon resonance peak at 410 nm, indicating nanoparticle formation with a band gap of ~3.03 eV. XRD confirmed a face-centered cubic crystalline structure, and FE-SEM revealed roughly spherical AgNPs (14.69–47.82 nm). The minimum inhibitory concentration was 15 μg/mL, whereas minimum fungicidal concentrations ranged from 125 to 500 μg/mL. Two-way analysis of variance (p<0.001) showed significant antifungal activity, with C. albicans being the most susceptible. Paired t-tests (p<0.001) confirmed significant cytoplasmic leakage in all species following AgNP exposure.

Conclusion: AgNPs demonstrated potent antifungal effects against Candida spp. by disrupting cell membranes. These findings support AgNPs as a promising alternative for managing VVC.

Downloads

Download data is not yet available.

References

Bairagi GR, Patel VP. Formulation and development of curcumin based emulgel in treatment and recurrence of vaginal candidiasis. Int J Curr Pharm Res. 2021;13(5):89-99. doi: 10.22159/ijcpr.2021v13i5.1900

Jeanmonod R, Chippa V, Jeanmonod D. Vaginal Candidiasis. Treasure Island, FL: StatPearls Publishing; 2025 Jan. Available from: https:// www.ncbi.nlm.nih.gov/books/NBK459317

Farr A, Effendy I, Tirri BF, Hof H, Mayser P, Petricevic L, et al. Vulvovaginal candidosis (excluding mucocutaneous candidosis): guideline of the German (DGGG), Austrian (OEGGG) and Swiss (SGGG) society of gynecology and obstetrics (S2k-level, AWMF Registry Number 015/072, September 2020). Geburtshilfe Frauenheilkd. 2021;81(4):398-421. doi: 10.1055/a-1345-8793, PMID 33867561

Willems HM, Ahmed SS, Liu J, Xu Z, Peters BM. Vulvovaginal candidiasis: A current understanding and burning questions. J Fungi (Basel). 2020;6(1):27. doi: 10.3390/jof6010027, PMID 32106438

Rosati D, Bruno M, Jaeger M, Ten Oever J, Netea MG. Recurrent vulvovaginal candidiasis: An immunological perspective. Microorganisms. 2020;8(2):144. doi: 10.3390/microorganisms8020144, PMID 31972980

Disha T, Haque F. Prevalence and risk factors of vulvovaginal candidosis during pregnancy: A review. Infect Dis Obstet Gynecol. 2022;2022:6195712. doi: 10.1155/2022/6195712, PMID 35910510

Cui X, Wang L, Lü Y, Yue C. Development and research progress of anti-drug resistant fungal drugs. J Infect Public Health. 2022;15(9):986- 1000. doi: 10.1016/j.jiph.2022.08.004, PMID 35981408

Souza CM, Bezerra BT, Mellon DA, de Oliveira HC. The evolution of antifungal therapy: Traditional agents, current challenges and future perspectives. Curr Res Microb Sci. 2025;8:100341. doi: 10.1016/j. crmicr.2025.100341, PMID 39897698

Pawar JR, Phatak RS, Qureshi NM, Singh AE, Shinde MD, Amalnerkar DP, et al. Contemporary trends in active and intelligent polymer nanocomposite based food packaging systems for food safety and sustainability in the modern aeon. Curr Mat Sci. 2024;17(4):e120723218668.

Abdel-Megeed RM. Biogenic nanoparticles as a promising drug delivery system. Toxicol Rep. 2025;14:101887. doi: 10.1016/j. toxrep.2024.101887, PMID 39867515.

Li B, Pan L, Zhang H, Xie L, Wang X, Shou J, et al. Recent developments on using nanomaterials to combat Candida albicans. Front Chem. 2021;9:813973. doi: 10.3389/fchem.2021.813973, PMID 35004630

Karna SR, Kavitha R, Damodharan N. Anticancer activity of silver nanoparticle of prodigiosin on lung cancer. Int J Appl Pharm. 2023;15(1):264-8. doi: 10.22159/ijap.2023v15i1.43628

More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M. Silver nanoparticles: Bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms. 2023;11(2):369. doi: 10.3390/microorganisms11020369, PMID 36838334

Mussin J, Giusiano G. Biogenic silver nanoparticles as antifungal agents. Front Chem. 2022;10:1023542. doi: 10.3389/fchem.2022.1023542, PMID 36277355

Abosede OO, Ezegwu LE. Synthesis and spectroscopic characterization of silver (I) mebendazole complexes. Int J Chem Res. 2022;6(2):1-5.

Gupta M. Inorganic nanoparticles: An alternative therapy to combat drug resistant infections. Int J Pharm Pharm Sci. 2021;13(8):20-31. doi: 10.22159/ijpps.2021v13i8.42643

Shirsat S, Pawar D, Jain N, Pawar J, Tale VS, Henry R. Synthesis of copper oxide nanoparticles by chemical precipitation method for the determination of antibacterial efficacy against Streptococcus sp. and Staphylococcus sp. Asian J Pharm Clin Res. 2019;12(5):135-8. doi: 10.22159/ajpcr.2019.v12i5.32270

Czernel G, Bloch D, Matwijczuk A, Cieśla J, Kędzierska-Matysek M, Florek M, et al. Biodirected synthesis of silver nanoparticles using aqueous honey solutions and evaluation of their antifungal activity against pathogenic Candida spp. Int J Mol Sci. 2021;22(14):7715. doi: 10.3390/ijms22147715, PMID 34299335

Pawar JS, Patil RH. Green synthesis of silver nanoparticles using Eulophia herbacea (Lindl.) tuber extract and evaluation of its biological and catalytic activity. SN Appl Sci. 2020;2(1):52. doi: 10.1007/s42452- 019-1846-9

Bahey MG, Gabr BM, Gabr AM, Abo Hagar AM, Hegazy EE. Effect of silver nanoparticles on different Candida species isolated from patients with oral candidiasis. Microb Infect Dis. 2024;5(4):1642-53. doi: 10.21608/mid.2024.295446.1980

Naik LS, Ramana Devi CV. Phyto-fabricated silver nanoparticles inducing microbial cell death via reactive oxygen species-mediated membrane damage. IET Nanobiotechnol. 2021;15(5):492-504. doi: 10.1049/nbt2.12036, PMID 34694754

Robinson JR, Isikhuemhen OS, Anike FN, Subedi K. Physiological response of Saccharomyces cerevisiae to silver stress. J Fungi (Basel). 2022;8(5):539. doi: 10.3390/jof8050539, PMID 35628793

Published

07-06-2025

How to Cite

ARTI ZENDE, et al. “PHYSICOCHEMICAL CHARACTERIZATION AND ANTIFUNGAL EFFICACY OF SILVER NANOPARTICLES AGAINST CANDIDA SPECIES”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 6, June 2025, pp. 228-33, doi:10.22159/ajpcr.2025v18i6.54631.

Issue

Section

Original Article(s)