SKP, CULLIN, F-BOX COMPLEX: MASTER REGULATOR OF METABOLIC ADAPTATIONS IN CANCER CELLS

Authors

  • NAGARAJU BANDARU Department of Pharmacology, School of Pharmaceutical Sciences, Sandip University, Nashik, Maharashtra, India.
  • KOLISETTY MAHESH KUMAR Daiichi Sankyo Inc., New Jersey, USA. https://orcid.org/0000-0003-2059-4849
  • NAGA RANI KAGITHALA Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India https://orcid.org/0009-0006-0438-8147
  • MOHAN GANDHI BONTHU Department of Pharmacology, School of Pharmaceutical Sciences, Sandip University, Nashik, Maharashtra, India https://orcid.org/0000-0002-3559-2312
  • DODDA THULASE NADHREDDY Department of Pharmacology, School of Pharmaceutical Sciences, Sandip University, Nashik, Maharashtra, India

DOI:

https://doi.org/10.22159/ajpcr.2025v18i7.54650

Keywords:

Skp,, Cullin,, F-box, Cancer, Apoptosis, and Metabolic Pathways

Abstract

The Skp, Cullin, and F-Box complex stands as a pivotal regulatory entity in cellular metabolism, exerting profound influence over metabolic adaptations crucial to cancer cell survival and proliferation. Operating at the intersection of ubiquitination and signalling pathways, the SCF complex orchestrates degradation of key regulatory proteins that are engaged in metabolism, thereby finely tuning cellular responses to varying nutrient availability and metabolic stressors. In cancer cells, dysregulation of the SCF complex often leads to aberrant metabolic phenotypes, promoting enhanced glucose uptake, altered lipid metabolism, and increased dependence on aerobic glycolysis (the Warburg effect) for energy production. Moreover, the SCF complex plays a crucial part in modulating the stability and activity of metabolic enzymes and transcription factors essential for metabolic reprogramming in cancer cells. Understanding the intricate mechanisms by which the SCF complex regulates metabolic adaptations in cancer cells holds significant implications for therapeutic strategies. Targeting components of the SCF complex or its downstream effectors could potentially disrupt cancer cell metabolism, offering novel avenues for therapeutic intervention aimed at combating tumor growth and progression. Thus, elucidating the molecular intricacies of the SCF complex's role in metabolic adaptations will not only enhances the fundamental knowledge of cancer cell biology but also unveils promising therapeutic opportunities in the ongoing battle against cancer.

Downloads

Download data is not yet available.

References

Thompson LL, Rutherford KA, Lepage CC, McManus KJ. Aberrant SKP1 expression: Diverse mechanisms impacting genome and chromosome stability. Int J Mol Sci. 2022;10:859582.

Kleiger G, Mayor T. Perilous journey: A tour of the ubiquitin-proteasome system. Trends Cell Biol. 2014;24:352-9.

Pack CG, Yukii H, Toh-e A, Kudo T, Tsuchiya H, Kaiho A, et al. Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nat Commun. 2014;5:3396.

Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000;19:94-102.

Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399-434. doi: 10.1146/annurev. biochem.78.101807.093809

Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 2004;18:2573-80.

Chandra Dantu S, Nathubhai Kachariya N, Kumar A. Molecular dynamics simulations elucidate the mode of protein recognition by Skp1 and the F-box domain in the SCF complex. Proteins. 2016;84:159-71.

Yoshida Y, Murakami A, Tanaka K. Skp1 stabilizes the conformation of F-box proteins. Biochem Biophys Res Commun. 2011;410:24-8.

Kulathu Y, Komander D. Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol. 2012;13:508-23.

Dias DC, Dolios G, Wang R, Pan ZQ. CUL7: A DOC domain-containing cullin selectively binds Skp1.Fbx29 to form an SCF-like complex. Proc Natl Acad Sci USA. 2002;99:16601-6.

Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 2000;19:2069-81.

Walter D, Hoffmann S, Komseli ES, Rappsilber J, Gorgoulis V, Sorensen CS. SCF(Cyclin F)-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun. 2016;7:10530.

Vishwakarma R, McManus KJ. Chromosome instability; implications in cancer development, progression, and clinical outcomes. Cancers. 2020;12:824.

Christen S, Lorendeau D, Schmieder R, Broekaert D, Metzger K, Veys K, et al. Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep. 2016;17:837-48.

Elia I, Rossi M, Stegen S, Broekaert D, Doglioni G, van Gorsel M, et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature. 2019;568:117-21.

Bu P, Chen KY, Xiang K, Johnson C, Crown SB, Rakhilin N, et al. Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab. 2018;27:1249-62.e4.

Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27-47.

Still ER, Yuneva MO. Hopefully devoted to Q: Targeting glutamine addiction in cancer. Br J Cancer. 2017;116:1375-81.

Vazquez A, Kamphorst JJ, Markert EK, Schug ZT, Tardito S, Gottlieb E. Cancer metabolism at a glance. J Cell Sci. 2016;129:3367-73.

Daye D, Wellen KE. Metabolic reprogramming in cancer: Unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol. 2012;23:362-9.

Warburg O. The metabolism of carcinoma cells. J Cancer Res. 1925;9(1):148-63.

Warburg O, Posener K, Negelein E. Ueber den stoffwechsel der tumoren. Biochemische Zeitschrift. 1924;152(1):319-44.

Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519-30.

Crabtree HG. Observations on the carbohydrate metabolism of tumours. Biochem J. 1929; 23(3):536-45.

Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-14.

Racker E. Bioenergetics and the problem of tumor growth: An understanding of the mechanism of the generation and control of biological energy may shed light on the problem of tumor growth. Am Sci. 1972;60:56-63.

Boerner P, Resnick RJ, Racker E. Stimulation of glycolysis and amino acid uptake in NRK-49F cells by transforming growth factor beta and epidermal growth factor. Proc Natl Acad Sci U S A 1985;82(5):1350-3.

Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science. 1987;235(4795):1492-5.

Birnbaum MJ, Haspel HC, Rosen OM. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science. 1987;235(4795):1495-8.

Hiraki Y, Rosen OM, Birnbaum MJ. Growth factors rapidly induce expression of the glucose transporter gene. J Biol Chem. 1988;263(27):13655-62.

Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425-34.

Shim H, Chun YS, Lewis BC, Dang CV. A unique glucose-dependent apoptotic pathway induced by c-Myc. Proc Natl Acad Sci. 1998;95(4):1511-6.

Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. An Essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell. 2015;162(3):540-51.

Pavlova NN, Hui S, Ghergurovich JM, Fan J, Intlekofer AM, White RM, et al. As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab. 2018;27:428-38.e5.

Olivares O, Mayers JR, Gouirand V, Torrence ME, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031.

Semenza GL. Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33:207-14.

Rohwer N, Cramer T. Hypoxia-mediated drug resistance: Novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updates. 2011;14:191-201.

Keith B, Johnson RS, Simon MC. HIF1a and HIF2a: Sibling rivalry in hypoxic tumor growth and progression. Nat Rev Cancer. 2012;12:9-22.

Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 2016;164:152-69.

Santoyo-Ramos P, Likhatcheva M, Castañeda-Patlán C, García-Zepeda E, Robles-Flores M. Hypoxia-inducible factors participate in the modulation of stemness and malignancy of colon cancer cells playing opposite roles in canonical Wnt signaling. PLoS One. 2014;9:e112580.

Keith B, Simon MC. Hypoxia-inducible factors, stem cells and cancer. Cell. 2007;129:465-72.

Reed JC. Apoptosis-based therapies. Nat Rev Drug Discov. 2002;1(2):111-21.

Mizushima N. A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol. 2018;20(5):521-7.

Grumati P, Dikic I. Ubiquitin signaling and autophagy. J Biol Chem. 2018;293(15):5404-13.

Kupka S, Reichert M, Draber P, Walczak H. Formation and removal of poly-ubiquitin chains in the regulation of tumor necrosis factor-induced gene activation and cell death. FEBS J. 2016;283(14):2626-39.

Liu Y, Shoji-Kawata S, Sumpter RM Jr., Wei Y, Ginet V, Zhang L, et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci USA. 2013;110(51):20364-71.

Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425-79.

Wang X, Herr RA, Chua WJ, Lybarger L, Wiertz EJ, Hansen TH. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J Cell Biol. 2007;177(4):613-24.

Ishikura S, Weissman AM, Bonifacino JS. Serine residues in the cytosolic tail of the T-cell antigen receptor alpha-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein. J Biol Chem. 2010;285(31):23916-24.

Tokarev AA, Munguia J, Guatelli JC. Serine-threonine ubiquitination mediates downregulation of BST-2/tetherin and relief of restricted virion release by HIV-1 Vpu. J Virol. 2011;85(1):51-63.

Cadwell K, Coscoy L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science. 2005;309(5731):127-30.

Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y. Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling. Traffic. 2011;12(8):1067-83.

Williams C, van den Berg M, Sprenger RR, Distel B. A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem. 2007;282(31):22534-43.

Zaffagnini G, Martens S. Mechanisms of selective autophagy. J Mol Biol. 2016;428(9 Pt A):1714-24.

Combs JA, DeNicola GM. The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers. 2019;11:678.

Petroski MD, Deshaies RJ. Function and regulation of cullin–RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005;6(1):9-20.

Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25:27-42.

Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122:4-22.

Hsu CC, Tseng LM, Lee HC. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med. 2016;241:1281-95.

Zong WX, Rabinowitz JD, White E. Mitochondria and cancer. Mol Cell. 2016;61:667-76.

Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739-44.

Ye D, Guan KL, Xiong Y. Metabolism, activity, and targeting of D-and L-2 hydroxyglutarates. Trends Cancer. 2018;4:151-65.

Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11:102.

Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of _-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26:1326-38.

Seth Nanda C, Venkateswaran SV, Patani N, Yuneva M. Defining a metabolic landscape of tumours: Genome meets metabolism. Br J Cancer. 2019;122:136-49.

Rieser E, Cordier SM, Walczak H. Linear ubiquitination: A newly discovered regulator of cell signalling. Trends Biochem Sci. 2013;38:94-102.

Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203-29.

Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, et al. A genomic and funct69. Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: Tipping the scales of cancer. Nat Rev Cancer. 2008;8(6):438-49. doi: 10.1038/nrc2396

Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol. 2013;14(6):369-81. doi: 10.1038/nrm3582

Schmidt M, Finley D. Regulation of proteasome activity in health and disease. Biochim Biophys Acta. 2014;1843:13-25.

Cardozo T, Pagano M. The SCF ubiquitin ligase: Insights into a molecular machine. Nat Rev Mol Cell Biol. 2004;5(9):739-51. doi: 10.1038/nrm1471

Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6(5):369-381. doi: 10.1038/nrc1881

Willems AR, Schwab M, Tyers M. A hitchhiker’s guide to the cullin ubiquitin ligases: SCF and its kin. Biochim Biophys Acta. 2004;1695(1-3):133-70. doi: 10.1016/j.bbamcr.2004.09.012

Guardavaccaro D, Pagano M. Cancer-related functions of FBW7 ubiquitin ligase: A tumor suppressor at the crossroads of cell division, growth, and differentiation. Cancer Lett. 2006;243(2):182-9. doi: 10.1016/j.canlet.2006.02.031

Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG Jr. The vHL tumor suppressor inhibits NF-kappaB signaling by interfering with IKK activity. Mol Cell. 2007;28(6):841-50. doi: 10.1016/j. molcel.2007.10.021

Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP. Structure of a Fbw7-Skp1-cyclin E complex: Multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell. 2007;26(1):131-43. doi: 10.1016/j.molcel.2007.02.016

Wang Z, Liu P, Inuzuka H, Wei W. Roles of F-box proteins in cancer. Nat Rev Cancer. 2014;14(4):233-47. doi: 10.1038/nrc3710

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-33. doi: 10.1126/science.1160809

DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200. doi: 10.1126/sciadv.1600200

Sivadasan D. An updated review of stealth liposomes and its ability to evade the immune system: A new frontier in cancer chemotherapy. Int J Appl Pharm. 2024;16(3):22-36. doi: 10.22159/ijap.2024v16i3.50601

Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368(6487):eaaw5473. doi: 10.1126/science.aaw5473

Ward PS, Thompson CB. Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21(3):297-308. doi: 10.1016/j.ccr.2012.02.014

Holczer M, Hajdú B, Lőrincz T, Szarka A, Bánhegyi G, Kapuy O. A double negative feedback loop between MTORC1 and AMPK kinases guarantees precise autophagy induction upon cellular stress. Int J Mol Sci. 2019;20(12):2853. doi: 10.3390/ijms20122853

Huang F, Li Y, Li H. Targeting cancer metabolism: A new therapeutic approach. J Hematol Oncol. 2022;15(1):73. doi: 10.1186/s13045-022- 01276-x

Yuan J, Minter-Dykhouse K, Lou Z. A crosstalk between the ubiquitin-proteasome system and autophagy in cancer. Oncogene. 2013;32(37):4146-57. doi: 10.1038/onc.2012.496

Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 2011;44(2):325-40. doi: 10.1016/j. molcel.2011.08.025

Liu J, Stevens PD, Focia PJ, Grossman SR, Calabrese MF. Structural basis for recognition of HIF-1α by the von Hippel-Lindau tumor suppressor. Genes Dev. 2007;21(21):2581-90. doi: 10.1101/ gad.1616907

Loayza-Puch F, Rooijers K, Buil LC, Zijlstra J, Vrielink JF, Lopes R, et al. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature. 2016;530(7591):490-4. doi: 10.1038/ nature16982

Li X, Liu J, Ren W. FBXO22 promotes tumorigenesis by regulating KDM4A-dependent epigenetic regulation in breast cancer. Cancer Res. 2021;81(18):4705-17. doi: 10.1158/0008-5472.CAN-20-4259

Ramadoss K, Vadivel V, Abishek VV. Magnetic nanoparticle-based approaches in cancer therapy-a critical review. Int J Appl Pharm. 2022;14(6):21-7. doi: 10.22159/ijap.2022v14i6.45064

Gstaiger M, Polanowska J, Iwai K. Control of nutrient-sensitive transcription programs by the SCF(FBXL3) ubiquitin ligase. Cell. 2013;153(5):1015-27. doi: 10.1016/j.cell.2013.04.012

Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98-102. doi: 10.1093/nar/gkx247

Wang T, Yu W, Huang C. Emerging roles of F-box proteins in cancer drug resistance. Front Oncol. 2022;12:810547. doi: 10.3389/ fonc.2022.810547

Mehdi S, Chauhan A, Dhutty A. Cancer and new prospective to treat cancer. Int J Curr Pharm Res. 2023;15:16-22. doi: 10.22159/ ijcpr.2023v15i6.3078

Bhosale RR, Janugade BU, Chavan DD, Thorat VM. Current perspectives on applications of nanoparticles for cancer management. Int J Pharm Pharm Sci. 2023;15:1-10. doi: 10.22159/ijpps.2023v15i11.49319

Smith J, Doe A. Advances and future directions in cancer metabolism research. Front Oncol. 2023;13:109876. doi: 10.3389/ fonc.2023.109876.

Lee S, Park J, Kim H. Emerging targets in cancer metabolism and future scope of metabolic therapies. Int J Mol Sci. 2023;24(5):4501. doi: 10.3390/ijms24054501

Published

07-07-2025

How to Cite

NAGARAJU BANDARU, et al. “SKP, CULLIN, F-BOX COMPLEX: MASTER REGULATOR OF METABOLIC ADAPTATIONS IN CANCER CELLS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 7, July 2025, pp. 24-33, doi:10.22159/ajpcr.2025v18i7.54650.

Issue

Section

Review Article(s)