MOLECULAR DOCKING STUDIES OF NEW ANTIHYPERTENSIVE DRUG BASED ON DELPHINIDIN-3-SAMBUBIOSIDE ANALOGUES USING ANTIOGENSIN I–CONVERTING ENZYME AS THE TARGET

Authors

  • HEENA PEETHAMBARAN Department of Chemistry, St. Joseph’s College (Autonomous), Irinjalakuda, Kerala, India. https://orcid.org/0009-0003-0029-175X
  • DEENA ANTONY C Department of Chemistry, St. Joseph’s College (Autonomous), Irinjalakuda, Kerala, India https://orcid.org/0009-0001-7609-407X
  • NISHA GEORGE Department of Chemistry, St. Joseph’s College (Autonomous), Irinjalakuda, Kerala, India. https://orcid.org/0009-0003-0029-175X
  • ABHISHEK HARISH Department of Information Technology, Cochin University of Science and Technology, Kochi, Kerala, India

DOI:

https://doi.org/10.22159/ajpcr.2025v18i6.54657

Keywords:

Angiotensin-converting enzyme, Delphinidin-3-sambubioside, Antihypertensive drug, Molecular docking

Abstract

Objective: Hypertension is a major health concern which is responsible for various cardiovascular and renal disorders. Although being one of the most commonly prescribed medicines, antihypertensive drugs have been shown to have negative side effects for some patient groups, posing a need for the development of novel therapies. This study aimed to evaluate the potential of Delphinidin-3-sambubioside (D3S), an hibiscus anthocyanin, and its stereochemically altered analogs as angiotensin I–converting enzyme (ACE) inhibitors.

Methods: The ACE inhibitory activity of D3S and its stereochemically altered analogs was evaluated using an in silico molecular docking methods. To determine the important interaction stabilizing the ligand-protein complexes, binding affinities were computed and molecular interaction studies were performed. The binding pocket’s druggability was also investigated.

Results: The highest binding affinity was recorded for one of the analogs with a binding energy of −10.4 kcal/mol, which is greater than that obtained for D3S at −8.2 kcal/mol. Molecular interaction analysis of this analog demonstrated key hydrogen bond interactions with ACE residues along with other hydrophobic interactions and salt bridges at the active site stabilizing the protein-ligand complex. The possible druggable pocket was also predicted to explore any overlapping with binding regions and a drug score of 0.81 was obtained.

Conclusion: The increased binding affinity and favorable interaction profile of the D3S analog, combined with reported pharmacokinetic properties, predict D3S analogs as a potential alternative to be further investigated in vitro and in vivo as antihypertensive agents.

Downloads

Download data is not yet available.

References

Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16(4):223-37. doi: 10.1038/s41581-019- 0244-2, PMID 32024986

Alfaddagh A, Martin SS, Leucker TM, Michos ED, Blaha MJ, Lowenstein CJ, et al. Inflammation and cardiovascular disease: From mechanisms to therapeutics. Am J Prev Cardiol. 2020;4:100130. doi: 10.1016/j.ajpc.2020.100130, PMID 34327481

Coffey S, Roberts-Thomson R, Brown A, Carapetis J, Chen M, Enriquez-Sarano M, et al. Global epidemiology of valvular heart disease. Nat Rev Cardiol. 2021;18(12):853-64. doi: 10.1038/s41569- 021-00570-z, PMID 34172950

Priharnanto R, Lessang R, Masulili SL, Tadjoedin FM, Rahdewati H, Wulandari P, et al. Prostaglandin levels in gingival crevicular fluid in periodontitis patient with hypertension. Int J Appl Pharm. 2020;12(Special Issue 2):19-22. doi: 10.22159/ijap.2020.v12s2.OP-58

Kaur P, Kunwar A, Sharma M, Durgad K, Gupta S, Bangar SD, et al. The India hypertension control Initiative-early outcomes in 26 districts across five states of India, 2018-2020. J Hum Hypertens. 2022;37:560-7.

Afzal M. Recent updates on novel therapeutic targets of cardiovascular diseases. Mol Cell Biochem. 2021;476(1):145-55. doi: 10.1007/ s11010-020-03891-8, PMID 32845435

Laurent S. Antihypertensive drugs. Pharmacol Res. 2017;124:116-25. doi: 10.1016/j.phrs.2017.07.026, PMID 28780421

Bernstein KE, Khan Z, Giani JF, Cao DY, Bernstein EA, Shen XZ. Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol. 2018;14(5):325-36. doi: 10.1038/nrneph.2018.15, PMID 2957820

Jiang F, Yang J, Zhang Y, Dong M, Wang S, Zhang Q, et al. Angiotensin-converting enzyme 2 and angiotensin 1-7: Novel therapeutic targets. Nat Rev Cardiol. 2014;11(7):413-26. doi: 10.1038/nrcardio.2014.59, PMID 24776703

Hanif K, Bid HK, Konwar R. Reinventing the ACE inhibitors: Some old and new implications of ACE inhibition. Hypertens Res. 2010;33(1):11-21. doi: 10.1038/hr.2009.184, PMID 19911001

Ahmad H, Khan H, Haque S, Ahmad S, Srivastava N, Khan A. Angiotensin-converting enzyme and hypertension: A systemic analysis of various ACE inhibitors, their side effects, and bioactive peptides as a putative therapy for hypertension. J Renin Angiotensin Aldosterone Syst. 2023;2023:7890188. doi: 10.1155/2023/7890188, PMID 37389408

Ondetti MA, Rubin B, Cushman DW. Design of specific inhibitors of angiotensin-converting enzyme: New class of orally active antihypertensive agents. Science. 1977;196(4288):441-4. doi: 10.1126/ science.191908, PMID 191908

Coffman TM. Under pressure: The search for the essential mechanisms of hypertension. Nat Med. 2011;17(11):1402-9. doi: 10.1038/nm.2541, PMID 22064430

Rao LS, Lohar D, Khan J, Kalyana S. Alternative methods for improving balance in stroke recovery: Visual and verbal cues as cost-effective modalities. Int J Curr Pharm Res. 2023;15(4):102-4. doi: 10.22159/ijcpr.2023v15i4.3042

Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022;12(7):3049-62. doi: 10.1016/j.apsb.2022.02.002, PMID 35865092

Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. Br J Pharmacol. 2007;152(1):9-20. doi: 10.1038/sj.bjp.0707305, PMID 17549047

Jain NK, Agrawal AN, Kulkarni GT, Tailang MU. Molecular docking study on phytoconstituents of traditional ayurvedic drug tulsi (Ocimum sanctum linn.) against COVID-19 mpro enzyme: An in silico study. Int J Pharm Pharm Sci. 2022;14:44-50. doi: 10.22159/ ijpps.2022v14i4.43181

Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med. 2021;137:104851. doi: 10.1016/j. compbiomed.2021.104851, PMID 34520990

Zhao L, Ciallella HL, Aleksunes LM, Zhu H. Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov Today. 2020;25(9):1624-38. doi: 10.1016/j.drudis.2020.07.005, PMID 32663517

Astiani R, Sadikin M, Yanti Eff AR, Firdayani, Suyatna FD. In silico identification testing of triterpene saponines on Centella asiatica on inhibitor renin activity antihypertensive. Int J Appl Pharm. 2022;14(Special Issue 2):1-4. doi: 10.22159/ijap.2022.v14s2.44737

Rajesh KD, Vasantha S, Panneerselvam A, Valsala Rajesh NV, Jeyathilakan N. Phytochemical analysis, in vitro antioxidant potential and gas chromatography-mass spectrometry studies of Dicranopteris linearis. Asian J Pharm Clin Res. 2016;9(2):1-6. doi: 10.22159/ ajpcr.2016.v9s2.13636

Sogo T, Terahara N, Hisanaga A, Kumamoto T, Yamashiro T, Wu S, et al. Anti‐inflammatory activity and molecular mechanism of delphinidin 3‐ sambubioside, a Hibiscus anthocyanin. BioFactors. 2015;41(1):58-65. doi: 10.1002/biof.1201, PMID 25728636

Hopkins AL, Lamm MG, Funk JL, Ritenbaugh C. Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: A comprehensive review of animal and human studies. Fitoterapia. 2013;85:84-94. doi: 10.1016/j.fitote.2013.01.003, PMID 23333908

Sapian S, Ibrahim Mze AA, Jubaidi FF, Mohd Nor NA, Taib IS, Abd Hamid Z, et al. Therapeutic potential of Hibiscus sabdariffa Linn. in attenuating cardiovascular risk factors. Pharmaceuticals (Basel). 2023;16(6):807. doi: 10.3390/ph16060807, PMID 37375755

Shafiee M, Mohammadi V, Kazemi A, Davarpanah H, Tabibzadeh SM, Babajafari S, et al. The effect of Hibiscus sabdariffa (sour tea) compared to other herbal teas and antihypertension drugs on cardiometabolic risk factors: Result from a systematic review and meta-analysis. J Herb Med. 2021;29:100471. doi: 10.1016/j.hermed.2021.100471

Borrás-Linares I, Fernández-Arroyo S, Arráez-Roman D, Palmeros- Suárez PA, Del Val-Díaz R, Andrade-Gonzáles I, et al. Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind Crops Prod. 2015;69:385-94. doi: 10.1016/j.indcrop.2015.02.053

Da-Costa-Rocha I, Bonnlaender B, Sievers H, Pischel I, Heinrich M. Hibiscus sabdariffa L. - a phytochemical and pharmacological review. Food Chem. 2014;165:424-43. doi: 10.1016/j.foodchem.2014.05.002, PMID 25038696

Da Silva AP, Zia S, John OD, De Souza MC, Da Silva LC, Sganzela WG. Delphinidin: Sources, biosynthesis, bioavailability, bioactivity, and pharmacology. In: Xiao J, editor. Handbook of Dietary Flavonoids. Switzerland: Springer International Publishing; 2023. p. 1-31. doi: 10.1007/978-3-030-94753-8_56-1

Yani A, Patricia V. Phytochemical Composition and Inhibitory Activities of Hibiscus sabdariffa and Cucumis sativus infusions against angiotensin-converting enzyme. Trop J Nat Prod Res. 2023;7(2):2341- 2345. doi: 10.26538/tjnpr/v7i2.6

Jennings A, Welch AA, Fairweather-Tait SJ, Kay C, Minihane AM, Chowienczyk P, et al. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am J Clin Nutr. 2012;96(4):781-8.

Martinez-Ramirez EZ, Gonzalez-Cruz L, Bernardino-Nicanor A, Silva- Martínez GA, Falfan-Cortes RN, Gonzalez-Montiel S, et al. Hibiscus acid inhibitory capacity of angiotensin converting enzyme: An in vitro and in silico study. Plant Foods Hum Nutr. 2024;79(1):234-41. doi: 10.1007/s11130-024-01142-5, PMID 38285102

Salem MA, Ezzat SM, Ahmed KA, Alseekh S, Fernie AR, Essam RM. A comparative study of the antihypertensive and cardioprotective potentials of hot and cold aqueous extracts of Hibiscus sabdariffa L. in relation to their metabolic profiles. Front Pharmacol. 2022;13:840478. doi: 10.3389/fphar.2022.840478, PMID 35281911

Sanou A, Konaté K, Belemnaba L, Sama H, Kaboré K, Dakuyo R, et al. In vivo Diuretic activity and anti-hypertensive potential of Hibiscus sabdariffa extract by inhibition of angiotensin-converting enzyme and hypertension precursor enzymes. Foods. 2024;13(4):534. doi: 10.3390/ foods13040534, PMID 38397511

Chen Z, Zhang R, Shi W, Li L, Liu H, Liu Z, et al. The multifunctional benefits of naturally occurring delphinidin and its glycosides. J Agric Food Chem. 2019;67(41):11288-306. doi: 10.1021/acs.jafc.9b05079, PMID 31557009

Arrighi F, Berrino E, Secci D. Angiotensin-converting enzyme. In: Metalloenzymes. Netherlands: Elsevier; 2024. p. 239-53. doi: 10.1016/ B978-0-12-823974-2.00017-6

Manoharan S. Is it still relevant to discover new ACE inhibitors from natural products? YES, but only with comprehensive approaches to address the patients’ real problems: Chronic dry cough and angioedema. Molecules. 2023;28(11):4532. doi: 10.3390/molecules28114532, PMID 37299008

Bogaerts J, Aerts R, Vermeyen T, Johannessen C, Herrebout W, Batista JM. Tackling stereochemistry in drug molecules with vibrational optical activity. Pharmaceuticals (Basel). 2021;14(9):877. doi: 10.3390/ ph14090877, PMID 34577577

Seeliger D, De Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aid Mol Des. 2010;24(5):417-22. doi: 10.1007/s10822-010-9352-6, PMID 20401516

Cassidy CE, Setzer WN. Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: A molecular docking analysis. J Mol Model. 2010;16(2):311-26. doi: 10.1007/s00894-009-0547-5, PMID 19603203

Jha V, Devkar S, Gharat K, Kasbe S, Matharoo DK, Pendse S, et al. Screening of phytochemicals as potential inhibitors of breast cancer using structure based multitargeted molecular docking analysis. Phytomed Plus. 2022;2(2):100227. doi: 10.1016/j.phyplu.2022.100227

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comp Chem. 2009;30(16):2785-91. doi: 10.1002/jcc.21256, PMID 19399780

Munawaroh HS, Gumilar GG, Nurjanah F, Yuliani G, Aisyah S, Kurnia D, et al. In-vitro molecular docking analysis of microalgae extracted phycocyanin as an anti-diabetic candidate. Biochem Eng J. 2020;161:107666. doi: 10.1016/j.bej.2020.107666

Xiao W, Xu Y, Baak JP, Dai J, Jing L, Zhu H, et al. Network module analysis and molecular docking-based study on the mechanism of astragali radix against non-small cell lung cancer. BMC Complement Med Ther. 2023;23(1):345. doi: 10.1186/s12906-023-04148-9, PMID 37770919

Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, et al. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49(W1):W530-4. doi: 10.1093/nar/gkab294, PMID 33950214

Narang PK, Dey J, Mahapatra SR, Ghosh M, Misra N, Suar M, et al. Functional annotation and sequence-structure characterization of a hypothetical protein putatively involved in carotenoid biosynthesis

in microalgae. S Afr J Bot. 2021;141:219-26. doi: 10.1016/j. sajb.2021.04.014

Pande V, Joshi T, Pandey SC, Sati D, Mathpal S, Pande V, et al. Molecular docking and molecular dynamics simulation approaches for evaluation of laccase-mediated biodegradation of various industrial dyes. J Biomol Struct Dyn. 2022;40(23):12461-71. doi: 10.1080/07391102.2021.1971564, PMID 34459700

Belal A, Elanany MA, Al-Karmalawy AA, Elkamhawy A, Abourehab MA, Ghamry HI, et al. Design of new captopril mimics as promising ACE inhibitors: ADME, pharmacophore, molecular docking and dynamics simulation with MM-PBSA and PCA calculations. J Taibah Univ Sci. 2023;17(1):2210348. doi: 10.1080/16583655.2023.2210348

Gonzalez Amaya JA, Cabrera DZ, Matallana AM, Arevalo KG, Guevara-Pulido J. In-silico design of new enalapril analogs (ACE inhibitors) using QSAR and molecular docking models. Inform Med Unlocked. 2020;19:100336. doi: 10.1016/j.imu.2020.100336

Regulska K, Stanisz B, Regulski M, Murias M. How to design a potent, specific, and stable angiotensin-converting enzyme inhibitor. Drug Discov Today. 2014;19(11):1731-43. doi: 10.1016/j. drudis.2014.06.026, PMID 24997281

Chintha C, Gupta N, Ghate M, Vyas VK. Homology modeling, binding site identification, and docking study of human β-arrestin: An adaptor protein involved in apoptosis. Med Chem Res. 2014;23(3):1189-201. doi: 10.1007/s00044-013-0725-y

König S, Hadrian K, Schlatt S, Wistuba J, Thanos S, Böhm MR. Topographic protein profiling of the age-related proteome in the retinal pigment epithelium of Callithrix jacchus with respect to macular degeneration. J Proteomics. 2019;191:1-15. doi: 10.1016/j. jprot.2018.05.016, PMID 29859334

Siddiqui Q, Ali MS, Leow AT, Oslan SN, Mohd Shariff F. In silico identification and characterization of potential druggable targets among hypothetical proteins of Leptospira interrogans serovar Copenhageni: A comprehensive bioinformatics approach. J Biomol Struct Dyn. 2023;41(20):10347-67. doi: 10.1080/07391102.2022.2154845, PMID 36510668

Vyas VK, Ghate M, Patel K, Qureshi G, Shah S. Homology modeling, binding site identification and docking study of human angiotensin II type I (Ang II-AT1) receptor. Biomed Pharmacother. 2015;74:42-8. doi: 10.1016/j.biopha.2015.07.008, PMID 26349961

Wang S, Zhao C, Liu Z, Wang X, Liu N, Du W, et al. Structural and functional characterization of a novel α-conotoxin Mr1.7 from Conus marmoreus targeting neuronal nAChR α3β2, α9α10 and α6/α3β2β3 subtypes. Mar Drugs. 2015;13(6):3259-75. doi: 10.3390/md13063259, PMID 26023835

Yan W, Lin G, Zhang R, Liang Z, Wu L, Wu W. Studies on molecular mechanism between ACE and inhibitory peptides in different bioactivities by 3D-QSAR and MD simulations. J Mol Liq. 2020;304:112702. doi: 10.1016/j.molliq.2020.112702

Husain A, Chanana H, Khan SA, Dhanalekshmi UM, Ali M, Alghamdi AA, et al. Chemistry and pharmacological actions of delphinidin, a dietary purple pigment in anthocyanidin and anthocyanin forms. Front Nutr. 2022;9:746881. doi: 10.3389/fnut.2022.746881, PMID 35369062

Alazmi M, Motwalli O. Molecular basis for drug repurposing to study the interface of the S protein in SARS-CoV-2 and human ACE2 through docking, characterization, and molecular dynamics for natural drug candidates. J Mol Model. 2020;26(12):338. doi: 10.1007/s00894-020- 04599-8, PMID 33175236

Published

07-06-2025

How to Cite

HEENA PEETHAMBARAN, et al. “MOLECULAR DOCKING STUDIES OF NEW ANTIHYPERTENSIVE DRUG BASED ON DELPHINIDIN-3-SAMBUBIOSIDE ANALOGUES USING ANTIOGENSIN I–CONVERTING ENZYME AS THE TARGET”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 6, June 2025, pp. 117-23, doi:10.22159/ajpcr.2025v18i6.54657.

Issue

Section

Original Article(s)