INTEGRATED PHYTOCHEMICAL ANALYSIS OF STRYCHNOS NUX-VOMICA USING MOLECULAR SPECTROSCOPY (ULTRAVIOLET-VIS AND FOURIER TRANSFORM INFRARED) AND HYPHENATED CHROMATOGRAPHY (GAS CHROMATOGRAPHY-MASS SPECTROMETRY)

Authors

  • RAMU C Department of Botany, Pachaiyappa’s College (Affiliated to University of Madras), Chennai, Tamil Nadu, India.
  • GAYATHRI N Department of Botany, Pachaiyappa’s College (Affiliated to University of Madras), Chennai, Tamil Nadu, India.
  • PRIYA G Department of Biotechnology, Faculty of Science and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India. https://orcid.org/0000-0002-2971-1792
  • SATHISH KUMAR BOOBALAN Department of Botany, School of Science, Tamil Nadu Open University, Chennai, Tamil Nadu, India. https://orcid.org/0000-0002-8730-8096
  • SEKAR T Department of Environmental Science, Indira Gandhi National Tribal University (A Central University), Amarkantak, Madhya Pradesh, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i8.54684

Keywords:

Strychnos nux-vomica, Phytochemicals, UV-Vis, FTIR, GC-MS, Secondary metabolites

Abstract

Objectives: Integrating ultraviolet (UV)-Vis, Fourier transform infrared (FTIR), and gas chromatography-mass spectrometry (GC-MS) techniques provides a comprehensive approach to phytochemical analysis by combining compound quantification (UV-Vis), molecular identification (FTIR), and detailed component profiling (GC-MS). The objective of this study was to analyze the phytochemical content of the methanolic leaf extract of Strychnos nux-vomica L.

Methods: The photochemical content of the methanolic leaf extract was analyzed by molecular spectroscopic techniques, i.e., UV-Vis and FTIR, along with a hyphenated chromatography, i.e., GC-MS.

Results: In the UV-Vis spectrum, the most prominent peaks are in the UV region (200–300 nm range), with the highest absorbance at 204.0 nm (0.583371) corresponding to phenolic compounds. The peaks at 225 and 354 aligns with anthraquinones, and 259 may correspond to phenylpropanoid. Several smaller peaks are also visible in the 330–371 nm range. In the FTIR spectrum, 11 distinctive bands were absorbed, i.e., 3375.88, 2925.63, 2361.21, 1710.59, 1607.42, 1452.60, 1377.41, 1266.64, 1073.04, 1029.52, and 669.71: A broad peak at 3375.88 cm−1 which correspond to phenolics, flavonoids and alkaloids and a narrow peak at 669.71 cm−1 which correspond to aromatic compounds (alkaloids and flavonoids). The GC-MS chromatogram identified eight major phytochemicals according to their retention times, peak areas, and molecular characteristics. Based on the peak area, the highest and lowest peaks observed are at 9.324 min and 27.96 min, with areas of 14.7% and 2.96%, respectively. The peak at 9.324 min was identified as 2-butenethioic acid, S-[2-(acetylamino)ethyl] ester with 14.7% area, and the peak at 27.96 min was identified as tridecanoic acid, a methyl ester with 2.96% area.

Conclusion: The integration of UV-Vis, FTIR, and GC-MS techniques provided a comprehensive phytochemical profile of S. nux-vomica methanolic leaf extract. The results confirmed the presence of multiple bioactive compounds, supporting the plant’s traditional medicinal applications. These findings lay the groundwork for future research that should focus on isolating these compounds and validating their pharmacological potential through biological and toxicological studies.

Downloads

Download data is not yet available.

References

1. Wang H, Chen Y, Wang L, Liu Q, Yang S, Wang C. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices. Front Pharmacol. 2023;14:1265178. doi: 10.3389/ fphar.2023.1265178, PMID 37818188

2. Chaachouay N, Zidane L. Plant-derived natural products: A source for drug discovery and development. Drugs Drug Candidates. 2024;3(1):184-207. doi: 10.3390/ddc3010011

3. Chen J, Qu Y, Wang D, Peng P, Cai H, Gao Y, et al. Pharmacological evaluation of total alkaloids from nux vomica: Effect of reducing strychnine contents. Molecules. 2014;19(4):4395-408. doi: 10.3390/ molecules19044395, PMID 24727413

4. Behera MC, Mohanty TL, Paramanik BK. Silvics, phytochemistry and ethnopharmacy of endangered poison nut tree (Strychnos nux-vomica L.): A review. J Pharmacogn Phytochem. 2017;6(5):1207-16.

5. Dai J, Mumper RJ. Plant Phenolics: Extraction, Analysis and their Antioxidant and Anticancer Properties. Carolina: Carolina Digital Repository; 2010. doi: 10.17615/jfna-hm86

6. Eldahshan OA, Abdel-Daim MM. Phytochemical study, cytotoxic, analgesic, antipyretic and anti-inflammatory activities of Strychnos nux-vomica. Cytotechnology. 2015;67(5):831-44. doi: 10.1007/s10616- 014-9723-2, PMID 24711053

7. Guo R, Wang T, Zhou G, Xu M, Yu X, Zhang X, et al. Botany, phytochemistry, pharmacology and toxicity of Strychnos nux-vomica L.: A review. Am J Chin Med. 2018;46(1):1-23. doi: 10.1142/ S0192415X18500015, PMID 29298518

8. Patel K, Laloo D, Singh GK, Gadewar M, Patel DK. A review on medicinal uses, analytical techniques and pharmacological activities of Strychnos nux-vomica Linn.: A concise report. Chin J Integr Med. 2017;23(1):pp.1-13. doi: 10.1007/s11655-016-2514-1, PMID 28120207

9. Rajesh P, Kannan VR, Latha S, Selvamani P. Phytochemical and pharmacological profile of plants belonging to Strychnos genus: A review. In: Gupta VK, editor. Bioactive Phytochemicals: Perspectives for Modern Medicine. 1st ed., Vol. 1. New Delhi: Daya Publishing; 2012. p. 275-328.

10. Maji AK, Banerji P. Strychnos nux-vomica: A poisonous plant with various aspects of therapeutic significance. J Basic Clin Pharm. 2017;8:So87-S103.

11. Steinmann D, Ganzera M. Recent advances on HPLC/MS in medicinal plant analysis. J Pharm Biomed Anal. 2011;55(4):744-57. doi: 10.1016/j.jpba.2010.11.015, PMID 21131153

12. Liu W, Yin D, Li N, Hou X, Wang D, Li D, et al. Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Sci Rep. 2016;6:28591. doi: 10.1038/srep28591, PMID 27373366

13. Patle TK, Shrivas K, Kurrey R, Upadhyay S, Jangde R, Chauhan R. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV-vis and FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2020;242:118717. doi: 10.1016/j.saa.2020.118717, PMID 32745936

14. Mabasa XE, Mathomu LM, Madala NE, Musie EM, Sigidi MT. Molecular spectroscopic (FTIR and UV-vis) and hyphenated chromatographic (UHPLC-qTOF-MS) analysis and in vitro bioactivities of the Momordica balsamina leaf extract. Biochem Res Int. 2021;2021:2854217. doi: 10.1155/2021/2854217, PMID 34621548

15. Zhang M, Zhao J, Dai X, Li X. Extraction and analysis of chemical compositions of natural products and plants. Separations. 2023;10(12):598. doi: 10.3390/separations10120598

16. Grozescu I, Iorizzi M, Segneanu AE. Spectra analysis and plants research 2.0. Plants (Basel). 2024;13(20):2941. doi: 10.3390/ plants13202941, PMID 39458888

17. Ponphaiboon J, Krongrawa W, Aung WW, Chinatangkul N, Limmatvapirat S, Limmatvapirat C. Advances in natural product extraction techniques, electrospun fiber fabrication, and the integration of experimental design: A comprehensive review. Molecules. 2023;28(13):5163. doi: 10.3390/molecules28135163, PMID 37446825

18. Erol Ö, Irmisch S. Identification of flavonoids using UV-vis and MS spectra. Methods Mol Biol. 2025;2895:111-35. doi: 10.1007/978-1- 0716-4350-1_9, PMID 39885027

19. Johnson J, Mani J, Ashwath N, Naiker M. Potential for Fourier transform infrared (FTIR) spectroscopy toward predicting antioxidant and phenolic contents in powdered plant matrices. Spectrochim Acta A Mol Biomol Spectrosc. 2020;233:118228. doi: 10.1016/j.saa.2020.118228, PMID 32155578

20. Kumari N, Anand S, Shah K, Chauhan NS, Sethiya NK, Singhal M. Emerging role of plant-based bioactive compounds as therapeutics in Parkinson’s disease. Molecules. 2023;28(22):7588. doi: 10.3390/ molecules28227588, PMID 38005310

21. Yadeta AT. Chemical structures, biological activities, and medicinal potentials of amine compounds detected from Aloe species. Front Chem. 2024;12:1363066. doi: 10.3389/fchem.2024.1363066, PMID 38496272

22. Adebiyi JA, Njobeh PB, Adebo OA, Kayitesi E. Metabolite profile of Bambara groundnut (Vigna subterranea) and Dawadawa (an African fermented condiment) investigation using gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS). Heliyon. 2021;7(4):e06666. doi: 10.1016/j.heliyon.2021.e06666, PMID 33889778

23. Onukwuli CO, Izuchukwu CE, Paul-Chima UO. Advances in analytical techniques and therapeutic applications of phytochemicals. Int Digit Organ Sci Res J Biochem Biotech Allied Field. 2024;9(1):12-22. doi: 10.59298/IDOSR/JBBAF/24/91.1222

24. Selvakumar NM, Natarajan N, Soundararajan S, Boobalan SK, Subbiah M. Comparative insights into ultraviolet-B radiation-induced biochemical modulations in Senna auriculata: A gas chromatography-mass spectrometry profiling study. Asian J Pharm Clin Res. 2025;18:82- 9. doi: 10.22159/ajpcr.2025v18i2.53568

25. Firdouse S, Ahmed S, Munaim MA. Qualitative and quantitative analysis of phytoconstituents in the Unani formulation Habb-E-Bukhar. Int J Curr Pharm Res. 2024;16(3):36-41. doi: 10.22159/ ijcpr.2024v16i3.4060

26. Baba H, Bunu SJ. Spectroscopic and molecular docking analysis of phytoconstituent isolated from Solenostemon monostachyus as potential cyclooxygenase enzymes inhibitor. Int J Chem Res. 2025;9(1):1-6. doi: 10.22159/ijcr.2025v9i1.241

27. Alexander HJ, Rosy BA, Blessy R, Besant SA, Sheeja CS, Rani GJ. Secondary metabolite profiling of pharmacologically active compounds from Sansevieria cylindrical Bojer ex Hook. Using UV, FTIR and HPLC analysis. J Pharm Negat Results. 2023;14(2);299 Suppl 2:2540-7. doi: 10.47750/pnr.2023.14

28. Yılmazer Keskin S, Avcı A, Fajriana Febda Kurnia H. Analyses of phytochemical compounds in the flowers and leaves of Spiraea japonica var. Fortunei using UV-vis, FTIR, and LC-MS techniques. Heliyon. 2024;10(3):e25496. doi: 10.1016/j.heliyon.2024.e25496, PMID 38327478

29. Karpagasundari C, Kulothungan S. Analysis of bioactive compounds in Physalis minima leaves using GC MS, HPLC, UV-vis and FTIR techniques. J Pharmacogn Phytochem. 2014;3:196-201.

30. Song XC, Canellas E, Asensio E, Nerín C. Predicting the antioxidant capacity and total phenolic content of bearberry leaves by data fusion of UV-vis spectroscopy and UHPLC/Q-TOF-MS. Talanta. 2020;213:120831. doi: 10.1016/j.talanta.2020.120831, PMID 32200925

31. Gansukh E, Gopal J, Paul D, Muthu M, Kim DH, Oh JW, et al. Ultrasound mediated accelerated anti-influenza activity of Aloe vera. Sci Rep. 2018;8(1):17782. doi: 10.1038/s41598-018-35935-x, PMID 30542141, PMCID PMC6290770

32. Fagundes VH, Pinho RJ, Wiirzler LA, Kimura E, Bersani-Amado CA, Cuman RK. High performance liquid chromatography method for the determination of anethole in rat plasma. Trop J Pharm Res. 2014;13(5):793-9. doi: 10.4314/tjpr.v13i5.21

33. Casoni D, Cobzac SC, Simion IM. Feasibility of UV-vis spectroscopy combined with pattern recognition techniques to authenticate the medicinal plant material from different geographical areas. J Anal Sci Technol. 2024;15(1):17. doi: 10.1186/s40543-024-00428-2

34. Kamble VV, Gaikwad NB. Fourier transform infrared spectroscopy spectroscopic studies in Embelia ribes Burm. F.: A vulnerable medicinal plant. Asian J Pharm Clin Res. 2016;9(9):41-7. doi: 10.22159/ ajpcr.2016.v9s3.13804

35. Farooq S, Shaheen G, Asif HM, Aslam MR, Zahid R, Rajpoot SR, et al. Preliminary phytochemical analysis: In-vitro comparative evaluation of anti-arthritic and anti-inflammatory potential of some traditionally used medicinal plants. Dose Response. 2022 Jan 1;20(1):15593258211069720. doi: 10.1177/15593258211069720, PMID 35069052

36. Megawati ER, Bangun H, Putra IB, Rusda M, Syahrizal D, Jusuf NK, et al. Phytochemical analysis by FTIR of Zanthoxylum acanthopodium, DC fruit ethanol extract, N-hexan, ethyl acetate and water fraction. Med Arch. 2023;77(3):183-8. doi: 10.5455/medarh.2023.77.183-188, PMID 37700927

37. Sun W, Shahrajabian MH. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules. 2023;28(4):1845. doi: 10.3390/molecules28041845, PMID 36838831

38. Chen J, Wang X, Qu YG, Chen ZP, Cai H, Liu X, et al. Analgesic and anti-inflammatory activity and pharmacokinetics of alkaloids from seeds of Strychnos nux-vomica after transdermal administration: Effect of changes in alkaloid composition. J Ethnopharmacol. 2012;139(1):181- 8. doi: 10.1016/j.jep.2011.10.038, PMID 22094056

39. Rozirwan N, Nugroho RY, Hendri M, Fauziyah N, Putri WA, Agussalim A. Phytochemical profile and toxicity of extracts from the leaf of Avicennia marina (Forssk.) Vierh. collected in mangrove areas affected by port activities. S Afr J Bot. 2022;150:903-19. doi: 10.1016/j. sajb.2022.08.037

40. Bruni GO, Klasson KT. Aconitic acid recovery from renewable feedstock and review of chemical and biological applications. Foods. 2022;11(4):573. doi: 10.3390/foods11040573, PMID 35206048

41. Paul BD, Snyder SH. Therapeutic applications of cysteamine and cystamine in neurodegenerative and neuropsychiatric diseases. Front Neurol. 2019;10:1315. doi: 10.3389/fneur.2019.01315, PMID 31920936

42. Jafari E, Khajouei MR, Hassanzadeh F, Hakimelahi GH, Khodarahmi GA. Quinazolinone and quinazoline derivatives: Recent structures with potent antimicrobial and cytotoxic activities. Res Pharm Sci. 2016;11(1):1-14. PMID 27051427

43. Misra D, Ghosh NN, Mandal M, Mandal V, Baildya N, Mandal S, et al. Anti-enteric efficacy and mode of action of tridecanoic acid methyl ester isolated from Monochoria hastata (L.) Solms leaf. Braz J Microbiol. 2022;53(2):715-26. doi: 10.1007/s42770-022-00696-3, PMID 35149984

Published

07-08-2025

How to Cite

RAMU C, et al. “INTEGRATED PHYTOCHEMICAL ANALYSIS OF STRYCHNOS NUX-VOMICA USING MOLECULAR SPECTROSCOPY (ULTRAVIOLET-VIS AND FOURIER TRANSFORM INFRARED) AND HYPHENATED CHROMATOGRAPHY (GAS CHROMATOGRAPHY-MASS SPECTROMETRY)”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 8, Aug. 2025, pp. 124-31, doi:10.22159/ajpcr.2025v18i8.54684.

Issue

Section

Original Article(s)