INSULIN-LOADED MICROEMULSION: FORMULATION, DEVELOPMENT, AND CHARACTERIZATION

Authors

  • SHUBHANGI RAHUL MORE Department of Pharmaceutics, Faculty of Science, Pacific Academy of Higher Education and Research University, Udaipur, Rajasthan, India
  • BHUSHANKUMAR S SATHE Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Education and Research D.Ph. (Government aided) Wardha, Maharashtra, India.
  • SHASHI DAKSH Department of Chemistry, Pacific University, Udaipur, Rajasthan, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i8.54745

Keywords:

Microemulsion, insulin, quillaja saponin, surfactants, co-surfactants

Abstract

Objectives: The present investigation aimed to develop insulin loaded microemulsion using quillaja saponin as natural surfactant, isopropyl myristate along with linoleic acid as oil phase, isopropyl alcohol as co-surfactant. And dimethyl sulfoxide as permeation enhancer.

Methods: Microemulsion was formulated employing conventional titration approach to identify composition that yield clear and stable microemulsion. Novel insulin-loaded microemulsion was assessed for multiple evaluation parameters like droplet size, zeta potential, in vitro skin permeation by Franz diffusion cell, permeation data analysis, and stability.

Results: The pseudoternary phase diagram demonstrated that the oil phase entailing isopropyl myristate and linoleic acid performed exceptionally well at weight ratios (3:1) with quillaja saponin and co-surfactant. Average droplet size of freshly prepared microemulsion of optimized batch F6 was found to be 0.395 μm.

Conclusion: Thus, it was concluded that small droplet size ensured optimal skin permeation and absorption by offering large surface area for interaction with biological membrane. Microemulsions exhibited stability. Thus, a simple manufacturing (conventional titration approach) proved promising for the treatment of diabetic management with developed novel insulin-loaded microemulsions.

Downloads

Download data is not yet available.

References

1. Reddy KT Kumar, Dharmamoorthy G, Vasavi Devi D, Vidiyala N, Bagade OM, Elumalai S, et al. Phytoconstituent Based Green Synthesis of Nanoparticles: Sources and Biomedical Applications in Cancer Therapy. Asian J. Green Chem.2025;9(3):329-354. doi: 10.48309/ AJGC.2025.501113.1669.

2. Schwuger MJ, Stickdorn K, Schomaecker R. Microemulsions in technical processes. Chem Rev. 1995;95(4):849-64. doi: 10.1021/ cr00036a003

3. Moulik SP, Paul BK. Structure, dynamics and transport properties of microemulsions. Adv Colloid Interface Sci. 1998;78(2):99-195. doi: 10.1016/S0001-8686(98)00063-3

4. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64:175-93. doi: 10.1016/j. addr.2012.09.018

5. Parmar B, Dave D, Shah C, Upadhyay U. Microemulsions in pharmaceutical applications: A comprehensive review of formulation, stability, and delivery systems. Int J Sci Res. 2024;13(9):899-905. doi: 10.21275/SR24909011324

6. Azad SK, Meeravali SK, Babu PC, Kumar KR, Naik VV. View of micro emulsions an overview and pharmaceutical applications. World J Curr Med Pharm Res. 2020;2(2):201-5.

7. Chen Q, Yang Z, Liu H, Man J, Oladejo AO, Ibrahim S, et al. Novel drug delivery systems: An important direction for drug innovation research and development. Pharmaceutics. 2024;16(5):674. doi: 10.3390/pharmaceutics16050674, PMID 38794336

8. Suhail N, Alzahrani AK, Basha WJ, Kizilbash N, Zaidi A, Ambreen J, et al. Microemulsions: Unique properties, pharmacological applications, and targeted drug delivery. Front Nanotechnol. 2021;3:754889. doi: 10.3389/fnano.2021.754889

9. Lee KL. Applications and use of Microemulsions. United States: Cornell University; 2011.

10. Singh PK, Kashif Iqubal M, Shukla VK, Shuaib M. Microemulsions: Current trends in novel drug delivery systems. J Pharm Chem Biol Sci. 2014;1(1):39-51.

11. Karasulu HY. Microemulsions as novel drug carriers: The formation, stability, applications and toxicity. Expert Opin Drug Deliv. 2008;5(1):119-35. doi: 10.1517/17425247.5.1.119, PMID 18095932

12. Annisa RA, Mutiah RO, Yuwono M, Hendradi E. Nanotechnology approach-self nanoemulsifying drug delivery system (SNEDDS). Int J Appl Pharm. 2023 Jul 1;15(4):12-9. doi: 10.22159/ijap.2023v15i4.47644

13. Vishwakarma N, Vyas SP. Formulation and in vitro characterisation of glucose-responsive nanocapsules for the delivery of M-insulin. Int J App Pharm. 2023;15(1):178-85. doi: 10.22159/ijap.2023v15i1.46511

14. Jalajakshi MN, Chandrakala V, Srinivasan S. An overview: Recent development in transdermal drug delivery. Int J Pharm Pharm Sci. 2022;14(10):1-9. doi: 10.22159/ijpps.2022v14i10.45471

15. He CX, He ZG, Gao JQ. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin Drug Deliv. 2010;7(4):445-60. doi: 10.1517/17425241003596337, PMID 20201713

16. Kadhum WR, Alijah M, Al-Rashidi RR, Obaid RK. Nanomedicine and drug delivery systems: Roles, advantages and disadvantages. Int J Curr Pharm Rev Res. 2022;4:1-6.

17. Spernath A, Aserin A. Microemulsions as carriers for drugs and nutraceuticals. Adv Colloid Interface Sci. 2006;128-130:47-64. doi: 10.1016/j.cis.2006.11.016, PMID 17229398

18. Attwood D, Mallon C, Ktistis G, Taylor CJ. A study on factorsinfluencing the droplet size in nonionic oil-in-water microemulsions. Int J Pharm. 1992;88(1-3):417-22. doi: 10.1016/0378-5173(92)90341-X

19. Li CW, Yang SY, He R, Tao WJ, Yin ZN. Development of quantitative structure-property relationship models for self-emulsifying drug delivery system of 2-aryl propionic acid NSAIDs. J Nanomater. 2011;2011:1-12. doi: 10.1155/2011/206320

20. Shah D, Agrawal V, Parikh R. Non-invasive insulin delivery system: A review. Int J Appl Pharm. 2010;2(1):35-40.

21. Malakar J, Sen SO, Nayak AK, Sen KK. Development and evaluation of microemulsions for transdermal delivery of insulin. ISRN Pharm. 2011;2011:780150. doi: 10.5402/2011/780150, PMID 22389858

22. Berkman M, Güleç K. Pseudo ternary phase diagrams: A practical approach for the area and centroid calculation of stable microemulsion regions. Istanb J Pharm. 2021;51(1):42-9. doi: 10.26650/ IstanbulJPharm.2020.0090

23. Ahmad J, Amin S, Kohli K, Mir SR. Construction of pseudoternary phase diagram and its evaluation: Development of self-dispersible oral formulation. Int J Drug Dev Res. 2013 Apr-Jun;5(2):84-90.

24. Momoh MA, Franklin KC, Agbo CP, Ugwu CE, Adedokun MO, Anthony OC, et al. Microemulsion-based approach for oral delivery of insulin: Formulation design and characterization. Heliyon. 2020;6(3):e03650. doi: 10.1016/j.heliyon.2020.e03650, PMID 32258491

25. Lokeshvar R, Ramaiyan V, Nithin V, Pavani S, Vinod Kumar T. Nanotechnology-driven therapeutics for liver cancer: Clinical applications and pharmaceutical insights. Asian J Pharm Clin Res. 2025;18(2):8-26. doi: 10.22159/ajpcr.2025v18i2.53429

26. Todo H. Transdermal permeation of drugs in various animal species. Pharmaceutics. 2017;9(3):33. doi: 10.3390/pharmaceutics9030033, PMID 28878145

27. Chedik L, Baybekov S, Cosnier F, Marcou G, Varnek A, Champmartin C. An update of skin permeability data based on a systematic review of recent research. Sci Data. 2024;11(1):224. doi: 10.1038/s41597-024- 03026-4, PMID 38383523

28. Levintova Y, Plakogiannis FM, Bellantone RA. An improved in vitro method for measuring skin permeability that controls excess hydration of skin using modified Franz diffusion cells. Int J Pharm. 2011;419(1-2): 96-106. doi: 10.1016/j.ijpharm.2011.07.025, PMID 21803138

29. Ng SF, Rouse J, Sanderson D, Eccleston G. A comparative study of transmembrane diffusion and permeation of ibuprofen across synthetic membranes using Franz diffusion cells. Pharmaceutics. 2010;2(2):209-23. doi: 10.3390/pharmaceutics2020209, PMID 27721352

30. Supe S, Takudage P. Methods for evaluating penetration of drug into the skin: A review. Skin Res Technol. 2021;27(3):299-308. doi: 10.1111/ srt.12968, PMID 33095948

31. Patel RB, Patel MR, Bhatt KK, Patel BG. Formulation and evaluation of microemulsions-based drug delivery system for intranasal administration of olanzapine. Int J Biomed Pharm Sci. 2013;7(1):20-7.

32. Krüse J, Golden D, Wilkinson S, Williams F, Kezic S, Corish J. Analysis, interpretation, and extrapolation of dermal permeation data using diffusion-based mathematical models. J Pharm Sci. 2007;96(3):682-703. doi: 10.1002/jps.20776, PMID 17080423

33. Cheruvu HS, Liu X, Grice JE, Roberts MS. An updated database of human maximum skin fluxes and epidermal permeability coefficients for drugs, xenobiotics, and other solutes applied as aqueous solutions. Data Brief. 2022;42:108242. doi: 10.1016/j.dib.2022.108242, PMID 35599823

34. Ruckenstein E, Chi JC. Stability of microemulsions. J Chem Soc Faraday Trans. 1975;71:1690-1707.

35. Agrawal A, Ahirwar B, Agrawal K. Saponins: A natural raw material for cosmeceuticals. In: Specialized Plant Metabolites as Cosmeceuticals. Amsterdam: Elsevier; 2024 Jan 1. p. 191-220. doi: 10.1016/B978-0- 443-19148-0.00009-7

36. Schreiner TB, Santamaria‐Echart A, Peres AM, Dias MM, Pinho SP, Barreiro MF. Study of binary mixtures of Tribulus terrestris extract and Quillaja bark saponin as oil‐in‐water nanoemulsion emulsifiers. J Surfactants Deterg. 2024 Jan;27(1):123-33. doi: 10.1021/acs.jafc.1c07893

37. Su J, Luo H, Zheng J, Xu Z, Fu X. Novel stable and high-loaded natural UV filter microemulsion based on optimized emulsifiers system. Colloids Surf A Physicochem Eng Aspects. 2024;699:134612. doi: 10.1016/j.colsurfa.2024.134612

38. Ostróżka-Cieślik A, Strasser C, Dolińska B. Insulin-loaded chitosan-cellulose-derivative hydrogels: In vitro permeation of hormone through strat-M® membrane and rheological and textural analysis. Polymers (Basel). 2024 Sep 16;16(18):2619. doi: 10.3390/polym16182619, PMID 39339083

39. André AD, Teixeira AM, Martins P. Influence of DMSO non-toxic solvent on the mechanical and chemical properties of a PVDF thin film. Appl Sci. 2024 Apr 16;14(8):3356. doi: 10.3390/app14083356

Published

07-08-2025

How to Cite

SHUBHANGI RAHUL MORE, et al. “INSULIN-LOADED MICROEMULSION: FORMULATION, DEVELOPMENT, AND CHARACTERIZATION”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 8, Aug. 2025, pp. 13-18, doi:10.22159/ajpcr.2025v18i8.54745.

Issue

Section

Original Article(s)