ADVANCEMENT OF DRIED BLOOD SPOT TECHNIQUE WITH REMDESIVIR BIOANALYTICAL METHOD DEVELOPMENT AND VALIDATION IN HUMAN BLOOD AS PER ICH M10 GUIDELINE

Authors

  • SUBHRANSHU PANDA Department of Analytical, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India.
  • TUSHAR CHAVAN Department of Analytical, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India. https://orcid.org/0009-0008-7137-2879
  • RAVINDRA BHAVSAR Department of Clinical, Pharmadesk Solutions Private Limited, Navi Mumbai, Maharashtra, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i7.54759

Keywords:

Remdesivir, Dried Blood Spot, Bioanalytical Method Validation, Bioanalysis, Clinical study, ICHM10, LC-MS/MS

Abstract

Objective: The objective of the study was to develop and validate a simple, accurate, and sensitive DBS assisted liquid chromatography–mass spectrometry LC–MS/MS method for the determination of Remdesivir in human blood using Remdesivir D5 as internal standard as per ICH M10 guideline.

Methods: For quantification, an electrospray ionization source with multiple reaction monitoring was employed on a Thermo Fisher Scientific Accela HPLC coupled with a TSQ ENDURA mass spectrometer. Waters Symmetry C18 column, used in combination with a highly organic acidified mobile phase, provided a prominent and consistent response with a run time of 3 minutes. The DBS technique was further refined using Whatman 903 DBS card to extract Remdesivir in acidified methanol.

Results: Method validation was conducted in accordance with ICH M10 guidelines. This method demonstrated excellent performance, with within-run and between-run precision below 7% and QC sample accuracy ranging from 95-109%.

Conclusion: Validated calibration range of 50–5000 ng/mL is well-suited for human clinical or therapeutic drug monitoring studies, particularly given Cmax of approximately 2229 ng/mL observed in human.

Downloads

Download data is not yet available.

References

Zijp TR, Izzah Z, Åberg C, Gan CT, Bakker SJ, Touw DJ, et al. Clinical value of emerging bioanalytical methods for drug measurements: A scoping review of their applicability for medication adherence and therapeutic drug monitoring. Drugs. 2021;81(17):1983-2002. doi: 10.1007/s40265-021-01618-7, PMID 34724175

Palnati N, Kotapati N, Vaidyanathan G. Liquid chromatography-mass spectrometry/mass spectrometry method for the determination of lapatinib in rat plasma: Application to pharmacokinetic studies in Wistar rats. Asian J Pharm Clin Res. 2021;14:74-7. doi: 10.22159/ ajpcr.2021.v14i2.39660

Quraishi R, Jain R, Ambekar A. The use of dried blood spot samples in screening drugs of abuse. Pharmacol Pharm. 2013;4(2):152-9. doi: 10.4236/pp.2013.42022

Ladror D, Pitt B, Funk W. Quantification of cotinine in dried blood spots as a biomarker of exposure to tobacco smoke. Biomarkers. 2018;23(1):44-50. doi: 10.1080/1354750X.2017.1375558, PMID 28862876

Permata D, Harahap Y, Ramadon D. Method development and validation of cefoperazone and sulbactam in dried blood spots by high-performance liquid chromatography photodiode array detector. Int J Appl Pharm. 2022;14(5):214-9. doi: 10.22159/ijap.2022v14i5.45078

Stielow M, Witczyńska A, Kubryń N, Fijałkowski Ł, Nowaczyk J, Nowaczyk A. The bioavailability of drugs-the current state of knowledge. Molecules. 2023;28(24):8038. doi: 10.3390/molecules28248038, PMID 38138529

Davit BM, Nwakama PE, Buehler GJ, Conner DP, Haidar SH, Patel DT, et al. Comparing generic and innovator drugs: A review of 12 years of bioequivalence data from the united states food and drug administration. Ann Pharmacother. 2009;43(10):1583-97. doi: 10.1345/aph.1M141, PMID 19776300

Nain M, Sinha A, Sharma A. Dried blood spots: A robust tool for malaria surveillance in countries targeting elimination. J Vector Borne Dis. 2023;60(1):11-7. doi: 10.4103/0972-9062.373616, PMID 37026215

Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL, et al. GS-5734 and its parent nucleoside analog inhibit filo- , pneumo-, and paramyxoviruses. Sci Rep. 2017;7:43395. doi: 10.1038/ srep43395, PMID 28262699

Thomas SN, French D, Jannetto PJ, Rappold BA, Clarke WA. Liquid chromatography-tandem mass spectrometry for clinical diagnostics. Nat Rev Methods Primers. 2022;2(1):96. doi: 10.1038/s43586-022- 00175-x, PMID 36532107

Emam AA, Abdelaleem EA, Abdelmomen EH, Abdelmoety RH, Abdelfatah RM. Rapid and ecofriendly UPLC quantification of Remdesivir, favipiravir and dexamethasone for accurate therapeutic drug monitoring in Covid-19 Patient’s plasma. Microchem J. 2022;179:107580. doi: 10.1016/j.microc.2022.107580, PMID 35582001

Rahmania TA, Harahap Y, Sandy K. Azithromycin and oseltamivir quantification method developed and validated using liquid chromatography-tandem mass spectrometry in dried blood spot. Int J Appl Pharm. 2024;16(2):182-7. doi: 10.22159/ijap.2024v16i2.49051

Sahakijpijarn S, Moon C, Warnken ZN, Maier EY, DeVore JE, Christensen DJ, et al. In vivo pharmacokinetic study of remdesivir dry powder for inhalation in hamsters. Int J Pharm X. 2021;3:100073. doi: 10.1016/j.ijpx.2021.100073, PMID 34977555

Harahap Y, Noer RF, Simorangkir TP. Development and validation of method for analysis of favipiravir and remdesivir in volumetric absorptive microsampling with ultra high-performance liquid chromatography-tandem mass spectrophotometry. Front Med (Lausanne). 2023;10:1022605. doi: 10.3389/fmed.2023.1022605, PMID 37228397

Raju GE, Pottendla S, Yaparthi S. Bioanalytical approach to ensitrelvir estimation using liquid chromatography-tandem mass spectrometry and its application to pharmaceutical research. Asian J Pharm Clin Res. 2025;18(3):25-9. doi: 10.22159/ajpcr.2025v18i3.53760

Skaggs C, Zimmerman H, Manicke N, Kirkpatrick L. Development and validation of a paper spray mass spectrometry method for the rapid quantitation of remdesivir and its active metabolite, GS-441524, in human plasma. J Mass Spectrom Adv Clin Lab. 2022;25:27-35. doi: 10.1016/j.jmsacl.2022.06.001, PMID 35721272

Tijare LK, Rangari NT, Mahajan UN. A review on bioanalytical method development and validation. Asian J Pharm Clin Res. 2016;9(9):6-10. doi: 10.22159/ajpcr.2016.v9s3.14321

Ramesh D, Habibuddin M. Application of validated RP-HPLC method for simultaneous determination of metaxalone and diclofenac potassium in plasma. Int J Curr Pharm Res. 2024;4:89-94. doi: 10.22159/ ijcpr.2024v16i4.5039

Neelima CH, Hemasri M, Susmitha P, Srilakshmi S. A novel method development and validation for the quantification of nefopam hydrochloride in parenteral dosage form by RP-HPLC method. Int J Curr Pharm Res. 2022;4:42-50. doi: 10.22159/ijcpr.2022v14i4.1982

Koster RA, Alffenaar JW, Greijdanus B, Uges DR. Fast LC-MS/MS analysis of tacrolimus, sirolimus, everolimus and cyclosporin A in dried blood spots and the influence of the hematocrit and immunosuppressant concentration on recovery. Talanta. 2013;115:47-54. doi: 10.1016/j. talanta.2013.04.027, PMID 24054560

Wilhelm AJ, Den Burger JC, Swart EL. Therapeutic drug monitoring by dried blood spot: Progress to date and future directions. Clin Pharmacokinet. 2014;53(11):961-73. doi: 10.1007/s40262-014-0177-7, PMID 25204403

Edelbroek PM, Van Der Heijden J, Stolk LM. Dried blood spot methods in therapeutic drug monitoring: Methods, assays, and pitfalls. Ther Drug Monit. 2009;31(3):327-36. doi: 10.1097/FTD.0b013e31819e91ce, PMID 19349929

Francke MI, Van Domburg B, Bouarfa S, Van de Velde D, Hellemons ME, Manintveld OC, et al. The clinical validation of a dried blood spot method for simultaneous measurement of cyclosporine A, tacrolimus, creatinine, and hematocrit. Clin Chim Acta. 2022;535:131-9. doi: 10.1016/j.cca.2022.08.014, PMID 36007582

Capiau S, Veenhof H, Koster RA, Bergqvist Y, Boettcher M, Halmingh O, et al. Official international association for therapeutic drug monitoring and clinical toxicology guideline: Development and validation of dried blood spot-based methods for therapeutic drug monitoring. Ther Drug Monit. 2019;41(4):409-30. doi: 10.1097/FTD.0000000000000643, PMID 31268966

Kaza M, Karaźniewicz-Łada M, Kosicka K, Siemiątkowska A, Rudzki PJ. Bioanalytical method validation: New FDA guidance vs. EMA guideline. Better or worse? J Pharm Biomed Anal. 2019;165:381-5. doi: 10.1016/j.jpba.2018.12.030, PMID 30590335

Koch G, Datta AN, Jost K, Schulzke SM, Van den Anker J, Pfister M. Caffeine citrate dosing Adjustments to assure stable caffeine concentrations in preterm neonates. J Pediatr. 2017;191(2):50-56.e1. doi: 10.1016/j.jpeds.2017.08.064, PMID 29173321

Huang C, Yin Z, Yang Y, Mo N, Yang H, Wang Y. Evaluation of pharmacokinetics and safety with bioequivalence of ibuprofen sustained-release capsules of two formulations, in Chinese healthy volunteers: Bioequivalence study. Drug Des Dev Ther. 2023;17:1881- 8. doi: 10.2147/DDDT.S404756, PMID 37384214

Pena E, Inatti A, Martin XS. Bioequivalence study of diclofenac 150 mg XR: A single-dose, randomized, open label, 2-period crossover study in healthy adult volunteers. J Biosci Med (Irvine). 2023;11(11):23-32. doi: 10.4236/jbm.2023.1111003

Sevilla-Tirado FJ, González-Vallejo EB, Leary AC, Breedt HJ, Hyde VJ, Fernández-Hernando N. Bioavailability of two new formulations of paracetamol, compared with three marketed formulations, in healthy volunteers. Methods Find Exp Clin Pharmacol. 2003;25(7):531-5. doi: 10.1358/mf.2003.25.7.778092, PMID 14571283

Jia C, Zhao N, Song H, Hu Y, Xu Y, Guo C, et al. Bioequivalence analysis of ondansetron hydrochloride tablets in healthy Chinese subjects: A randomized, open-label, two-period crossover phase 1 study. Drugs R D. 2024 Dec 1;24(4):531-8. doi: 10.1007/s40268-024- 00493-3, PMID 39467943

Bawazir SA, Gouda MW, El-Sayed YM, Al-Khamis KI, Al-Yamani MJ, Niazy EM, et al. Comparative bioavailability of two tablet formulations of ranitidine hydrochloride in healthy volunteers. Int J Clin Pharmacol Ther. 1998;36(5):270-4. PMID 9629991

Published

07-07-2025

How to Cite

SUBHRANSHU PANDA, et al. “ADVANCEMENT OF DRIED BLOOD SPOT TECHNIQUE WITH REMDESIVIR BIOANALYTICAL METHOD DEVELOPMENT AND VALIDATION IN HUMAN BLOOD AS PER ICH M10 GUIDELINE”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 7, July 2025, pp. 72-79, doi:10.22159/ajpcr.2025v18i7.54759.

Issue

Section

Original Article(s)