INHIBITORY EFFECT OF HESPERIDIN ON VOLUNTARY ETHANOL DRINKING AND PREFERENCE IN SWISS ALBINO MICE
DOI:
https://doi.org/10.22159/ajpcr.2025v18i8.54782Keywords:
Behavioral sensitization, Ethanol drinking preference, Hesperidin, Ethanol addictionAbstract
Objectives: This investigation is expected to evaluate the potential of hesperidin in inhibiting ethanol (EtOH)-induced behavioral sensitization and its effect on voluntary EtOH consumption and preference in Swiss albino mice.
Methods: Behavioral sensitization was induced using EtOH (2 g/kg), and the voluntary EtOH drinking preference test was employed to assess the effects of hesperidin. Mice were treated with hesperidin at doses of 4, 8, and 16 mg/kg (oral), and changes in EtOH intake and preference were recorded.
Results: Hesperidin significantly reduced EtOH consumption in rats at doses of 8 mg/kg and 16 mg/kg (p<0.001), with effects observed from days 31 to 34. Acute dosing at 4 mg/kg also decreased EtOH intake (p<0.001). Ondansetron showed similar efficacy (p<0.001). No significant group differences were found during the restricted access phase. Furthermore, no significant changes in water intake were observed during the restriction (days 19–28) or treatment phases (days 29–34; p>0.05), with hesperidin (4–16 mg/kg) and ondansetron (4 mg/kg) showing no effect (two-way repeated measures analysis of variance).
Conclusion: Hesperidin effectively attenuates EtOH -induced behavioral sensitization as well as reduces the rewarding effects of EtOH, suggesting its potential as a natural therapeutic agent for managing alcohol-related illnesses.
Downloads
References
1. Koob GF, Volkow ND. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry. 2016;3(8):760-73. doi: 10.1016/S2215- 0366(16)00104-8, PMID 27475769
2. World Health Organization. Global Status Report on Alcohol and Health. Switzerland: World Health Organization; 2018. doi: 10.1016/ S2215-0366(16)00104-8
3. Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet. 2009;373(9682):2223-33. doi: 10.1016/S0140- 6736(09)60746-7, PMID 19560604
4. Spanagel R. Alcoholism: A systems approach from molecular physiology to addictive behavior. Physiol Rev. 2009;89(2):649-705. doi: 10.1152/physrev.00013.2008, PMID 19342616
5. Soyka M, Müller CA. Pharmacotherapy of alcoholism-an update on approved and off-label medications. Expert Opin Pharmacother. 2017;18(12):1187-99. doi: 10.1080/14656566.2017.1349098, PMID 28658981
6. Heilig M, Egli M, Crabbe JC, Becker HC. Acute withdrawal, protracted abstinence and negative affect in alcoholism: Are they linked? Addict Biol. 2010;15(2):169-84. doi: 10.1111/j.1369-1600.2009.00194.x, PMID 20148778
7. Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015;124:64-74. doi: 10.1016/j.lfs.2014.12.030, PMID 25625242
8. Crews FT. Alcohol-related neurodegeneration and recovery: Mechanisms from animal models. Alcohol Res Health. 2008;31(4):377-88. doi: 10.1016/j.lfs.2014.12.030, PMID 23584011
9. Bison S, Crews F. Alcohol withdrawal increases neuropeptide Y immunoreactivity in rat brain. Alcohol Clin Exp Res. 2003;27(7):1173-83. doi: 10.1097/01.ALC.0000075827.74538.FE, PMID 12878925
10. Yunusoğlu O, Shahzadi A, Akünal Türel C, Demirkol MH, Berköz M, Akkan AG. Investigation of the pharmacological potential of myricetin on alcohol addiction in mice. J Res Pharm. 2022;26(4):722-33. doi: 10.29228/jrp.170
11. Ganeshpurkar A, Saluja A. The pharmacological potential of hesperidin. Indian J Biochem Biophys. 2019;56:287-300.
12. Bhutada P, Mundhada Y, Bansod K, Rathod S, Hiware R, Dixit P, et al. Inhibitory effect of berberine on the motivational effects of EtOH in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(8):1472-9. doi: 10.1016/j.pnpbp.2010.08.005, PMID 20713115
13. Chuang HG, Aziz NH, Wong JH, Mustapha M, Abdullah JM, Idris Z, et al. Role of TLR4 antagonist LPS-Rhodobacter sphaeroides on acute stress-induced voluntary EtOH preference in mice. Eur Neuropsychopharmacol. 2021;45:59-72. doi: 10.1016/j. euroneuro.2019.12.121, PMID 32014377
14. Maeda T, Kiguchi N, Fukazawa Y, Yamamoto A, Ozaki M, Kishioka S. Peroxisome proliferator-activated receptor gamma activation relieves expression of behavioral sensitization to methamphetamine in mice. Neuropsychopharmacology. 2007;32(5):1133-40. doi: 10.1038/ sj.npp.1301213, PMID 17019405
15. Bhutada P, Mundhada Y, Patil J, Rahigude A, Zambare K, Deshmukh P, et al. Cilnidipine prevents acquisition and expression of EtOH-induced locomotor sensitization in mice. Neurosci Lett. 2012;514(1):91-5. doi: 10.1016/j.neulet.2012.02.064, PMID 22402189
16. Wellman PJ, Clifford PS, Rodriguez JA. Ghrelin and ghrelin receptor modulation of psychostimulant action. Front Neurosci. 2013;7:171. doi: 10.3389/fnins.2013.00171, PMID 24093007
17. Suchankova P, Engel JA, Jerlhag E. Sub-chronic Ghrelin receptor blockade attenuates alcohol- and amphetamine-induced locomotor stimulation in mice. Alcohol Alcohol. 2016;51(2):121-7. doi: 10.1093/ alcalc/agv100, PMID 26330568
18. Quiroga C, Barberena JJ, Alcaraz-Silva J, Machado S, Imperatori C, Yadollahpour A, et al. The role of peroxisome proliferator-activated receptor in addiction: A novel drug target. Curr Top Med Chem. 2021;21(11):964-75. doi: 10.2174/1568026621666210521165532, PMID 34061003
19. Le Foll B, Di Ciano P, Panlilio LV, Goldberg SR, Ciccocioppo R. Peroxisome proliferator-activated receptor (PPAR) agonists as promising new medications for drug addiction: Preclinical evidence. Curr Drug Targets. 2013;14(7):768-76. doi: 10.2174/1389450111314070006, PMID 23614675
20. Jaiswal P, Mandal M, Mishra A. Effect of hesperidin on fluoride-induced neurobehavioral and biochemical changes in rats. J Biochem Mol Toxicol. 2020;34(11):e22575. doi: 10.1002/jbt.22575, PMID 32627286
21. Agrawal YO, Sharma PK, Shrivastava B, Arya DS, Goyal SN. Hesperidin blunts streptozotocin-isoproternol induced myocardial toxicity in rats by altering of PPAR-γ receptor. Chem Biol Interact. 2014;219:211-20. doi: 10.1016/j.cbi.2014.06.010, PMID 24954035
22. Bhargava P, Verma VK, Malik S, Khan SI, Bhatia J, Arya DS. Hesperidin regresses cardiac hypertrophy by virtue of PPAR-γ agonistic, anti-inflammatory, antiapoptotic, and antioxidant properties. J Biochem Mol Toxicol. 2019;33(5):e22283. doi: 10.1002/jbt.22283, PMID 30623541
23. Ferraz IC, Boerngen-Lacerda R. Serotonin 5-HT2 receptor antagonist does not reverse established ethanol-induced sensitization but blocks its development and expression. Pharmacol Biochem Behav. 2008;88(4):456-64. doi: 10.1016/j.pbb.2007.10.002, PMID 17988724
24. Tominaga K, Kido T, Ochi M, Sadakane C, Mase A, Okazaki H, et al. The traditional Japanese medicine Rikkunshito promotes gastric emptying via the antagonistic action of the 5-HT(3) receptor pathway in rats. Evid Based Complement Alternat Med. 2011;2011:248481. doi: 10.1093/ecam/nep173, PMID 19861508
25. Sari Y, Johnson VR, Weedman JM. Role of the serotonergic system in alcohol dependence: From animal models to clinics. Prog Mol Biol Transl Sci. 2011;98:401-43. doi: 10.1016/B978-0-12-385506-0.00010-7, PMID 21199778
26. Souza LC, De Gomes MG, Goes AT, Del Fabbro L, Filho CB, Boeira SP, et al. Evidence for the involvement of the serotonergic 5-HT(1A) receptors in the antidepressant-like effect caused by hesperidin in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2013;40:103-9. doi: 10.1016/j.pnpbp.2012.09.003, PMID 22996046
27. Belmer A, Patkar OL, Pitman KM, Bartlett SE. Serotonergic neuroplasticity in alcohol addiction. Brain Plast. 2016;1(2):177-206. doi: 10.3233/BPL-150022, PMID 29765841
28. Lal H, Prather PL, Rezazadeh SM. Potential role of 5HT1C and/or 5HT2 receptors in the mianserin-induced prevention of anxiogenic behaviors occurring during ethanol withdrawal. Alcohol Clin Exp Res. 1993;17(2):411-7. doi: 10.1111/j.1530-0277.1993.tb00785.x, PMID 8488986
29. Liu X, Li M, Feng X. Hesperidin and naringin alleviate alcohol-induced alterations in zebrafish larvae. Neurotoxicol Teratol. 2019;73:22-30. doi: 10.1016/j.ntt.2019.03.001, PMID 30885821
30. Abdel-Sttar AR, Khalaf MM, Aboyoussef AM, Abosaif AA. Ameliorative effect of hesperidin on carbon tetrachloride induced liver fibrosis in rats. Int J Pharm Pharm Sci. 2017;9(7):45-51. doi: 10.22159/ ijpps.2017v9i7.17611
31. Takeda H, Sadakane C, Hattori T, Katsurada T, Ohkawara T, Nagai K, et al. Rikkunshito, an herbal medicine, suppresses cisplatin-induced anorexia in rats via 5-HT2 receptor antagonism. Gastroenterology. 2008;134(7):2004-13. doi: 10.1053/j.gastro.2008.02.078, PMID 18439428
32. Vijishna LV, Dessai AD, Nayak UY, Lobo R. The antiosteoporotic potential of hesperidin and advanced delivery systems. Int J Appl Pharm. 2025;17(3):1-12. doi: 10.22159/ijap.2025v17i3.53661
33. Chang CY, Lin TY, Lu CW, Huang SK, Wang YC, Chou SS, et al. Hesperidin inhibits glutamate release and exerts neuroprotection against excitotoxicity induced by kainic acid in the hippocampus of rats. Neurotoxicology. 2015;50:157-69. doi: 10.1016/j.neuro.2015.08.014, PMID 26342684
34. Hosseini G, Jahandideh A, Hassanpour S, Akbari G. Anti-depressant effect of hesperidin in ovariectomized mice: Possible involvement of dopaminergic and serotoninergic systems. J Basic Clin Physiol Pharmacol. 2021;9:1-15. doi: 10.22070/jbcp.2021.13851.1138
35. Maan P, Chauhan S, Gupta N, Rani D. Dual-drug quantification: HPLC method validation for hesperidin and piperine in ethosomal delivery systems. Int J App Pharm. 2025;17(2):240-9. doi: 10.22159/ ijap.2025v17i2.53262
Published
How to Cite
Issue
Section
Copyright (c) 2025 KRUSHNA ZAMBARE, KAILASAM KOUMARAVELOU

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.