SYNTHESIS OF 1-(3,4-BIS(BENZYLOXY)PHENYL)-2-(4(SUBSTITUTEDSULFONYL)PIPERAZIN- 1-YL)ETHANONES: MOLECULAR DOCKING AND ANTIBACTERIAL PROPERTIES
DOI:
https://doi.org/10.22159/ajpcr.2025v18i8.54852Keywords:
Piperazine, Sulfonamide, Anti-microbial, Structure activity relationship, Molecular docking, AutoDockAbstract
Objectives: The aim of the study was to prepare a series of piperazine sulfonamide analogs (7a-l) and to perform in silico and in vitro antibacterial studies to determine their antibacterial activity.
Methods: All the synthesized sulfonamides are characterized by different spectroscopic techniques. Further, the antibacterial screening results revealed that the synthesized sulfonamides exhibit good antibacterial activities.
Results: Among the synthesized compounds, 7c and 7f displayed noteworthy antibacterial activity. The piperazine sulfonamide 7c exhibited superior inhibition of Enterobacter aerogenes and Bacillus subtilis pathogens with minimum inhibitory concentration (MIC) values of 81±0.78 and 49±1.02 μg/mL, respectively. The molecule 7f is most effective against E. aerogenes and B. subtilis with consecutive MIC’s of 86±0.58 μg/mL and 67±0.76 μg/mL. Moreover, the molecular docking studies were performed to comprehend the compounds binding interactions. Using in silico studies, the designed molecules were effectively screened as Escherichia coli deoxyribonucleic acid gyrase enzyme (PDB: 4BAE) inhibitors. The molecular docking studies for all the synthesized piperazine sulfonamide analogs (7a-l) were carried out using Maestro 11.2 and geometry optimized by Macro model program v9.1 (GLIDE, Schrodinger, LLC). In addition, to categorize the ligands accountable for the anti-bacterial activity, the molecular docking simulations were performed with software AutoDock Vina of PyRx and the Discovery studio. The obtained piperazine sulfonamide hybrids 7c and 7f gained superior molecular docking scores of −5.62 and −5.70, respectively. The structure activity relationships of the target sulfonamides were established.
Conclusion: The in vitro antibacterial screening outcomes revealed that the molecules 7f and 7c showed potent anti-bacterial activity and good binding energy in docking analysis.
Downloads
References
1. Hu Y, Gao GF, Zhu B. The antibiotic resistome: Gene flow in environments, animals and human beings. Front Med. 2017;11(2):161- 8. doi: 10.1007/s11684-017-0531-x, PMID 28500429
2. Wendlandt S, Shen J, Kadlec K, Wang Y, Li B, Zhang WJ, et al. Multidrug resistance genes in staphylococci from animals that confer resistance to critically and highly important antimicrobial agents in human medicine. Trends Microbiol. 2015;23(1):44-54. doi: 10.1016/j. tim.2014.10.002. PMID 25455417
3. Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387(10014):176-87. doi: 10.1016/S0140- 6736(15)00473-0, PMID 26603922
4. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2007;6(1):29-40. doi: 10.1038/nrd2201. PMID 17159923
5. Kamboj M, Singh DP, Jain K. Synthesis, spectral and antibacterial studies of 18- membered tetraazamacrocyclic complexes derived from carbohydrazide and diacetonyl. Int J Chem Res. 2012;3(1):21-4.
6. Boddapati SN, Bollikolla HB, Bhavani KG, Singh HS, Ramesh N, Jonnalagadda SB. Comprehensive review on green methods: Synthesis of benzothiazoles. Arab J Chem. 2023;16:105190. doi: 10.1016/j. rechem.2025.102212
7. Bollikolla HB, Boddapati SN, Thangamani S, Mutchu BR, Alam MM, Hussien M, et al. Advances in synthesis and biological activities of benzotriazole analogues: A micro review. J Heterocycl Chem. 2023;60(5):705-42. doi: 10.1002/jhet.4587
8. Juthiga VV, Boddapati SN, Balha M, Tamminana R. Comprehensive review on green methods: Synthesis of benzothiazoles. Res Chem. 2025;15:102212. doi: 10.1016/j.rechem.2025.102212
9. Ibezim E, Duchowicz PR, Ortiz EV, Castro EA. QSAR on aryl-piperazine derivatives with activity on malaria. Chemometr Intell Lab Syst. 2012;110(1):81-8. doi: 10.1016/j.chemolab.2011.10.002
10. Akkoç MK, Yüksel MY, Durmaz İ, Atalay RÇ. Design, synthesis, and biological evaluation of indole-based 1,4-disubstituted piperazines as cytotoxic agents. Turk J Chem. 2012;36:515-25. doi: 10.3906/kim- 1111-5
11. Meher CP, Rao AM, Omar M. Piperazine-pyrazine and their multiple biological activities. Asian J. Pharm Sci Res. 2013;3:43-60. doi: 10.7439/ijasr.v1i1.1766
12. Ahmed A, Molvi KI, Nazim S, Baig I, Memon T, Rahil M. The importance of six membered saturated nitrogen containing ring in psychological disorders. J Chem Pharm Res. 2012;4:872-80.
13. Jain VK, Jain B, Sharma UK, Saha D. Synthesis, characterization and antimicrobial screening of some 4-substituted-1-(4-substituted phenyl) piperazine derivatives. Int J Curr Pharm Res. 2011;3:66-70. doi: 10.13040/IJPSR.0975-8232.11(9).4479-86
14. Mukherjee D, Mukhopadhayay A, Shridhara Bhat K, Shridhara AM, Rao KS. Synthesis, characterization and anticonvulsant activity of substituted 4-chloro-2-(4-piperazin-1-yl) quinazolines. Int J Pharm Pharm Sci. 2014;6:567-71.
15. Gan LL, Fang B, Zhou CH. Synthesis of azole-containing piperazine derivatives and evaluation of their antibacterial, antifungal and cytotoxic activities. Bol Korean Chem Soc. 2010;31(12):3684-92. doi: 10.5012/bkcs.2010.31.12.3684
16. Joshi NK, Kundariya DS, Parmar JM. Synthesis, characterization and antimicrobial evaluation of some novel 1,3,4-oxadiazoles containing piperazine moiety. Int J Chem Tech. Res. 2012;24:1503-8.
17. Cho SD, Song SY, Kim KH, Zhao BX, Ahn C, Joo WH, et al. One-pot synthesis of symmetrical 1,4-disubstituted piperazine-2,5-diones. Bull Korean Chem Soc. 2004;25(3):415-6. doi: 10.5012/bkcs.2004.25.3.415
18. Kálai T, Khan M, Balog M, Kutala VK, Kuppusamy P, Hideg K. Structure-activity studies on the protection of trimetazidine derivatives modified with nitroxides and their precursors from myocardial ischemia-reperfusion injury. Bioorg Med Chem. 2006;14(16):5510-6. doi: 10.1016/j.bmc.2006.04.040, PMID 16697647
19. Al-Shaalan NH. Extractive spectrophotometric assay of cyclizine in a pharmaceutical formulation and biological fluids. Saudi Pharm J. 2012;20(3):255-62. doi: 10.1016/j.jsps.2012.02.002, PMID 24115904
20. Ashour S, Kattan N. Simultaneous determination of nortriptyline hydrochloride and fluphenazine hydrochloride in microgram quantities from low dosage forms by liquid chromatography-UV detection. J Pharm Anal. 2012;2(6):437-42. doi: 10.1016/j.jpha.2012.05.004, PMID 29403779
21. Silva LL, Oliveira KN, Nunes RJ. Synthesis and Characterization of Monofunctionalised Hexapyrrolylbenzene Derivatives. United States: Arkivoc; 2006. p. 124-9.
22. Ignat A, Zahari VC, Mogos N, Palibroda C, Cristea LS. Dumitrescu, microwave assisted synthesis of some p-toluensulfonyl hydrazinothiazoles with analgesic and anti-inflammatory activity. Farmacia. 2010;3:290-302.
23. Finch RA, Shyam K, Penketh PG, Sartorelli AC. 1,2-Bis(methylsulfonyl)- 1-(2-chloroethyl)-2-(methylamino)carbonylhydrazine (101M): A novel sulfonylhydrazine prodrug with broad-spectrum antineoplastic activity. Cancer Res. 2001;61(7):3033-8. PMID 11306484
24. Ayoup MS, Khaled N, Abdel-Hamid H, Ghareeb DA, Nasr SA, Omer A, et al. Novel sulfonamide derivatives as multitarget antidiabetic agents: Design, synthesis, and biological evaluation. RSC Adv. 2024;14(11):7664-75. doi: 10.1039/D4RA01060D, PMID 38440282
25. Scozzafava A, Supuran CT, Carta F. Antiobesity carbonic anhydrase inhibitors: A literature and patent review. Expert Opin Ther Pat. 2013;23(6):725-35. doi: 10.1517/13543776.2013.790957, PMID 23607332
26. Capasso C, Supuran CT. Sulfa and trimethoprim-like drugs - antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J Enzym Inhib Med Chem. 2014;29(3):379-87. doi: 10.3109/14756366.2013.787422, PMID 23627736
27. Revanasiddappa HD, Prasad SK, Kumar SL, Vinay KB, Shekar CS, Jayalakshmi B. DNA interaction studies, antimicrobial and anthelmintic activity of sulfonamides of 1, 3-dioxolane and 3,4-dihydroquinolin2(1h) one analogues: Synthesis and characterization. Int J Chem Res. 2011;2(1):1-6.
28. Singh K, Sharma PK. Synthesis, characterization and antimicrobial study of some benzenesulfonamide based bipyrazoles. Int J Pharm Pharm Sci. 2014;6(10):345-51.
29. Gupta A, Halve AK. Synthesis and in vitro antibacterial screening of some new azomethines derived from sulphonamides. Int J Curr Pharm Res. 2015;7(1):17-20.
30. Maren TH. Relations between structure and biological activity of sulfonamides. Annu Rev Pharmacol Toxicol. 1976;16:309-27. doi: 10.1146/annurev.pa.16.040176.001521, PMID 59572
31. Boyd AE 3rd. Sulfonylurea receptors, ion channels, and fruit flies. Diabetes. 1988;37(7):847-50. doi: 10.2337/diab.37.7.847, PMID 2454858
32. Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzym Inhib Med Chem. 2016;31(3):345-60. doi: 10.3109/14756366.2015.1122001, PMID 26619898
33. Carta F, Supuran CT. Diuretics with carbonic anhydrase inhibitory action: A patent and literature review (2005-2013). Expert Opin Ther Pat. 2013;23(6):681-91. doi: 10.1517/13543776.2013.780598, PMID 23488823
34. Carta F, Di Cesare Mannelli L, Pinard M, Ghelardini C, Scozzafava A, McKenna R, et al. A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects. Bioorg Med Chem. 2015;23(8):1828-40. doi: 10.1016/j.bmc.2015.02.027, PMID 25766630
35. Al-Soud YA, Al-Sa’Doni HH, Amajaour HA, Salih KS, Mubarak MS, et al. Synthesis, characterization and anti-HIV and antitumor activities of new coumarin derivatives. Chem Sci. 2008;63:83-9. doi: 10.1002/
chin.200814158
36. Supuran CT. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites. 2017;7(3):48. doi: 10.3390/ metabo7030048, PMID 28926956
37. Chibale K, Haupt H, Kendrick H, Yardley V, Saravanamuthu A, Fairlamb AH, et al. Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine. Bioorg Med Chem Lett. 2001;11(19):2655-7. doi: 10.1016/s0960-894x(01)00528-5, PMID 11551771
38. El-Gaby M, Ammar YA, El-Qaliei MI, Ali AM, Hussein MF, Faraghally FA. Sulfonamides: Synthesis and the recent applications in medicinal chemistry. Egypt J Chem. 2020;63:5289-327. doi: 10.21608/ ejchem.2020.33860.2707
39. Turner SR, Strohbach JW, Tommasi RA, Aristoff PA, Johnson PD, Skulnick HI, et al. Tipranavir (PNU-140690): A potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro-4- hydroxy-2-pyrone sulfonamide class. J Med Chem. 1998;41(18):3467- 76. doi: 10.1021/jm9802158, PMID 9719600
40. Arranz ME, Dìaz JA, Ingate ST, Witvrouw M, Pannecouque C, Balzarini J, et al. Synthesis and anti-HIV activity of 1,1,3-trioxo- 2H,4H-thieno[3,4-e][1,2,4]thiadiazines (TTDs): A new family of HIV- 1 specific non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem. 1999;7(12):2811-22. doi: 10.1016/S0968-0896(99)00221-7, PMID 10658585
41. Neamati N, Mazumder A, Sunder S, Owen JM, Schultz RJ, Pommier Y. 2-Mertcaptobenzenesulphonamides as novel inhibitors of human immunodeficiency virus type 1 integrase and replication. Antivir Chem Chemother. 1997;8(6):485-95. doi: 10.1177/095632029700800602
42. Scozzafava A, Supuran CT. Carbonic anhydrase and matrix metalloproteinase inhibitors: Sulfonylated amino acid hydroxamates with MMP inhibitory properties act as efficient inhibitors of CA isozymes I, II, and IV, and N-hydroxysulfonamides inhibit both these zinc enzymes. J Med Chem. 2000;43(20):3677-87. doi: 10.1021/ jm000027t, PMID 11020282
43. Scozzafava A, Supuran CT. Protease inhibitors: Synthesis of potent bacterial collagenase and matrix metalloproteinase inhibitors incorporating N-4-nitrobenzylsulfonylglycine hydroxamate moieties. J Med Chem. 2000;43:1858-65. doi: 10.1016/s0928-0987(00)00089-0
44. Vullo D, De Luca V, Scozzafava A, Carginale V, Rossi M, Supuran CT, et al. The extremo-α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium Azorense is highly inhibited by sulfonamides. Bioorg Med Chem. 2013;21(15):4521-5. doi: 10.1016/j. bmc.2013.05.042, PMID 23777827
45. Natarajan A, Guo Y, Harbinski F, Fan YH, Chen H, Luus L, et al. Novel Arylsulfoanilide-oxindole hybrid as an anticancer agent that inhibits translation initiation. J Med Chem. 2004;47(21):4979-82. doi: 10.1021/ jm0496234, PMID 15456240
46. Heffron TP, Berry M, Castanedo G, Chang C, Chuckowree I, Dotson J, et al. Identification of GNE-477, a potent and efficacious dual PI3K/ mTOR inhibitor. Bioorg Med Chem Lett. 2010;20(8):2408-11. doi: 10.1016/j.bmcl.2010.03.046, PMID 20346656
47. Cumming J, Babu S, Huang Y, Carrol C, Chen X, Favreau L, et al. Piperazine sulfonamide BACE1 inhibitors: Design, synthesis, and in vivo characterization. Bioorg Med Chem Lett. 2010;20(9):2837-42. doi: 10.1016/j.bmcl.2010.03.050, PMID 20347593
48. Kandile NG, Mohamed MI, Zaky H, Mohamed HM. Novel pyridazine derivatives: Synthesis and antimicrobial activity evaluation. Eur J Med Chem. 2009;44(5):1989-96. doi: 10.1016/j.ejmech.2008.09.047, PMID 19013692
49. Oh S, Moon HI, Son IH, Jung JC. Synthesis of sulfonamides and evaluation of their histone deacetylase (HDAC) activity. Molecules. 2007;12(5):1125-35. doi: 10.3390/12051125, PMID 17873846
50. Yoon J, Yoo EA, Kim JY, Pae AN, Rhim H, Park WK, et al. Preparation of piperazine derivatives as 5-HT7 receptor antagonists. Bioorg Med Chem. 2008;16(10):5405-12. doi: 10.1016/j.bmc.2008.04.023, PMID 18456500
51. Wang Y, Busch-Petersen J, Wang F, Kiesow TJ, Graybill TL, Jin J, et al. Camphor sulfonamide derivatives as novel, potent and selective CXCR3 antagonists. Bioorg Med Chem Lett. 2009;19(1):114-8. doi: 10.1016/j.bmcl.2008.11.008, PMID 19014886
52. Wilson CO, Gisvold O, Block JH, Block J, Beale JM, editors. Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry. 11th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2004.
53. Levin JI, Chen JM, Du MT, Nelson FC, Killar LM, Skala S, et al. Anthranilate sulfonamide hydroxamate TACE inhibitors. Part 2: SAR of the acetylenic P1’ group. Bioorg Med Chem Lett. 2002;12(8):1199- 202. doi: 10.1016/S0960-894X(02)00136-1, PMID 11934588
54. Kim DK, Lee JY, Lee N, Ryu DH, Kim JS, Lee S, et al. Synthesis and phosphodiesterase inhibitory activity of new sildenafil analogues containing a carboxylic acid group in the 5’-sulfonamide moiety of a phenyl ring. Bioorg Med Chem. 2001;9(11):3013-21. doi: 10.1016/ S0968-0896(01)00200-0, PMID 11597484
55. Ma T, Fuld AD, Rigas JR, Hagey AE, Gordon GB, Dmitrovsky E, et al. A phase I trial and in vitro studies combining ABT-751 with carboplatin in previously treated non-small cell lung cancer patients. Chemotherapy. 2012;58(4):321-9. doi: 10.1159/000343165, PMID 23147218
56. Dekker M, Ogden RC, Flexner CW, editors. Protease Inhibitors in AIDS Therapy. New York, NY, Basel: Taylor and Francis Inc.; 2001.
57. Roush WR, Gwaltney SL, Cheng J, Scheidt KA, McKerrow JH, Hansell E. Vinyl sulfonate esters and vinyl sulfonamides: Potent, irreversible inhibitors of cysteine proteases. J Am Chem Soc. 1998;120(42):10994-5. doi: 10.1021/ja981792o
58. Scozzafava A, Menabuoni L, Mincione F, Supuran CT. Carbonic anhydrase inhibitors. A general approach for the preparation of water-soluble sulfonamides incorporating polyamino-polycarboxylate tails and of their metal complexes possessing long-lasting, topical intraocular pressure-lowering properties. J Med Chem. 2002;45(7):1466-76. doi: 10.1021/jm0108202, PMID 11906288
59. Pacchiano F, Aggarwal M, Avvaru BS, Robbins AH, Scozzafava A, McKenna R, et al. Selective hydrophobic pocket binding observed within the carbonic anhydrase II active site accommodate different 4-substituted-ureido-benzenesulfonamides and correlate to inhibitor potency. Chem Commun (Camb). 2010;46(44):8371-3. doi: 10.1039/ C0CC02707C, PMID 20922253
60. Murthy SN, Subrahmanyam TA, Emmanuel K, Bhuvaneswari C. Synthesis of 2-aryl-5-(arylsulfonyl)-1,3,4-oxadiazoles as potent antibacterial and antioxidant agents. Turk J Chem. 2022;46:766-76. doi: 10.55730/1300-0527.3366
61. Murthy BS, Johar K, Manoj Kumar BV, Satish VA, Emmanuel KA. Synthesis, HOMO-LUMO analysis and antioxidant activity of novel tetrazole hybrids. Eurasian J Chem. 2023;28(4(112)):20-9. doi: 10.31489/2959-0663/4-23-15
62. Boddapati SN, Kola AE, Talari S, Arnipalli MS. Synthesis, docking and antibacterial evaluation of N-(1-(3-Fluoro-4-morpholinophenyl)- 1H-tetrazol-5-yl) amides. Chem Afr. 2022;5(3):781-90. doi: 10.1007/ s42250-022-00347-y
63. Viegas-Junior C, Danuello A, Da Silva Bolzani V, Barreiro EJ, Fraga CA. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr Med Chem. 2007;14(17):1829-52. doi: 10.2174/092986707781058805, PMID 17627520
64. Phatak PS, Sathe BP, Dhumal ST, Rehman NN, Dixit PP, Khedkar VM, et al. Synthesis, antimicrobial evaluation, and docking studies of substituted acetylphenoxymethyl-triazolyl-N-phenylacetamides. J Heterocycl Chem. 2019;56(7):1928-38. doi: 10.1002/jhet.3568
Published
How to Cite
Issue
Section
Copyright (c) 2025 Pawanjeet Kaur; Durgarao Kantheti; S N Murthy Boddapati

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.