NETWORK PHARMACOLOGY AND MOLECULAR DOCKING-BASED EXPLORATION OF RUBIACEOUS PLANTS FOR BREAST CANCER: PHYTOCHEMICALS, PRECLINICAL STUDIES, AND REGULATORY PERSPECTIVES
DOI:
https://doi.org/10.22159/ajpcr.2025v18i7.54934Keywords:
Breast Cancer, Rubiaceae Plants Phytochemicals, Cell lines, Network pharmacology, Molecular Docking, Regulatory guidanceAbstract
Objective: Cancer remains a global health challenge due to the limitations of conventional therapies, including drug toxicity and resistance. This study aims to explore the anticancer potential of Rubiaceous plant species by investigating their bioactive phytochemicals, molecular targets, and pharmacological pathways, with a particular focus on breast cancer.
Materials and Methods: A network pharmacology approach was employed to identify therapeutic compounds and their molecular targets. Disease-related targets were sourced from GeneCards and the Therapeutic Target Database (TTD). Cytoscape and STRING were used to construct interaction networks. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to elucidate biological functions and pathways. Molecular docking studies were conducted to assess the binding affinities of key phytoconstituents.
Results: A total of 1,435 biological processes and 173 pathways were associated with breast cancer. Molecular docking revealed Quercetin as the most potent compound with a binding affinity of -34.92 kcal/mol. Other compounds such as Acacetin, Resveratrol, and Apigenin exhibited lower, but significant, binding affinities. Rubiaceous plants, including Alibertia myrciifolia, Anthocephalus cadamba, and Camptotheca acuminata, were identified to contain flavonoids, alkaloids, and anthraquinones with demonstrated anticancer effects, including apoptosis induction and DNA damage.
Conclusion: Rubiaceous plants exhibit promising anticancer potential through multi-target mechanisms. Regulatory oversight is crucial to ensure the safety and efficacy of these herbal therapies. Further research is warranted to isolate active compounds, understand their molecular mechanisms, and validate their clinical relevance for integration into modern oncology.
Downloads
References
Roy PS, Saikia BJ. Cancer and cure: A critical analysis. Indian J Cancer. 2016;53(3):441-2. doi: 10.4103/0019-509X.200658, PMID 28244479
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. doi: 10.3322/caac.21834, PMID 38572751
Xiong X, Zheng LW, Ding Y, Chen YF, Cai YW, Wang LP, et al. Breast cancer: Pathogenesis and treatments. Signal Transduct Target Ther. 2025 Feb 19;10(1):49. doi: 10.1038/s41392-024-02108-4, PMID 39966355
Greenwell M, Rahman PK. Medicinal plants: Their use in anticancer treatment. Int J Pharm Sci Res. 2015 Oct 1;6(10):4103-12. doi: 10.13040/IJPSR.0975-8232.6(10).4103-12, PMID 26594645
Lichota A, Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci. 2018 Nov 9;19(11):3533. doi: 10.3390/ijms19113533, PMID 30423952
Mazumder K, Aktar A, Roy P, Biswas B, Hossain ME, Sarkar KK, et al. A review on mechanistic insight of plant derived anticancer bioactive phytocompounds and their structure activity relationship. Molecules. 2022 May 9;27(9):3036. doi: 10.3390/molecules27093036, PMID 35566385
Davis AP, Govaerts R, Bridson DM, Ruhsam M, Moat J, Brummitt NA. A global assessment of distribution, diversity, endemism, and taxonomic effort in the Rubiaceae. Ann Mo Bot Gard. 2009 Mar 23;96(1):68-78. doi: 10.3417/2006205
Barbhuiya HA, Dutta BK, Das AK, Baishya AK. The family Rubiaceae in southern Assam with special reference to endemic and rediscovered plant taxa. J Threat Taxa. 2014 Apr 26;6(4):5649-59. doi: 10.11609/ JoTT.o3117.5649-59
Karou SD, Tchacondo T, Ilboudo DP, Simpore J. Sub-Saharan Rubiaceae: A review of their traditional uses, phytochemistry and biological activities. Pak J Biol Sci. 2011 Jan 15;14(3):149-69. doi: 10.3923/pjbs.2011.149.169, PMID 21870639
Batiha GE, Magdy Beshbishy A, Wasef L, Elewa YH, Abd El-Hack ME, Taha AE, et al. Uncaria tomentosa (Willd. ex Schult.) DC.: A review on chemical constituents and biological activities. Appl Sci. 2020 Apr 13;10(8):2668. doi: 10.3390/app10082668
Gabriela CS, Gibbelly CS, Waneska AP, Alisson MO, Matheus SM, Maria C, et al. Evaluation of ethanolic extract of Morinda citrifolia Linn for antitumor activity. Afr J Pharm Pharmacol. 2016 Feb 8;10(5):66-72. doi: 10.5897/AJPP2015.4371
Abou Assi R, Darwis Y, Abdulbaqi IM, Khan AA, Vuanghao L, Laghari MH. Morinda citrifolia (Noni): A comprehensive review on its industrial uses, pharmacological activities, and clinical trials. Arab J Chem. 2017 Jul;10(5):691-707. doi: 10.1016/j.arabjc.2015.06.018
Ahmed MB, Islam SU, Alghamdi AA, Kamran M, Ahsan H, Lee YS. Phytochemicals as chemo-preventive agents and signaling molecule modulators: current role in cancer therapeutics and inflammation. Int J Mol Sci. 2022 Dec 12;23(24):15765. doi: 10.3390/ijms232415765, PMID 36555406
González-Castelazo F, Soria-Jasso LE, Torre-Villalvazo I, Cariño-Cortés R, Muñoz-Pérez VM, Ortiz MI, et al. Plants of the Rubiaceae Family with effect on metabolic syndrome: Constituents, pharmacology, and molecular targets. Plants (Basel). 2023 Oct 15;12(20):3583. doi: 10.3390/plants12203583, PMID 37896046
Asma ST, Acaroz U, Imre K, Morar A, Shah SR, Hussain SZ, et al. Natural products/bioactive compounds as a source of anticancer drugs. Cancers (Basel). 2022 Dec 15;14(24):6203. doi: 10.3390/ cancers14246203, PMID 36551687
Wang X, Wang ZY, Zheng JH, Li S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin J Nat Med. 2021 Jan;19(1):1-11. doi: 10.1016/ S1875-5364(21)60001-8, PMID 33516447
Sachdeo R, Khanwelkar C, Shete A. In silico exploration of berberine as a potential wound healing agent via network pharmacology, molecular docking, and Molecular Dynamics simulation. Int J Appl Pharm. 2024 Mar 7:188-94. doi: 10.22159/ijap.2024v16i2.49922
Cao J, Li L, Xiong L, Wang C, Chen Y, Zhang X. Research on the mechanism of berberine in the treatment of COVID-19 pneumonia pulmonary fibrosis using network pharmacology and molecular docking. Phytomed Plus. 2022 May;2(2):100252. doi: 10.1016/j. phyplu.2022.100252, PMID 35403089
Gao SS, Sun JJ, Wang X, Hu YY, Feng Q, Gou XJ. Research on the mechanism of Qushi Huayu decoction in the intervention of nonalcoholic fatty liver disease based on network pharmacology and molecular docking technology. BioMed Res Int. 2020;2020:1704960. doi: 10.1155/2020/1704960, PMID 33204683
Bremer B. A review of molecular phylogenetic studies of Rubiaceae. Ann Mo Bot Gard. 2009 Mar 23;96(1):4-26. doi: 10.3417/2006197
Martins D, Nunez CV. Secondary metabolites from Rubiaceae species. Molecules. 2015 Jul 22;20(7):13422-95. doi: 10.3390/ molecules200713422, PMID 26205062
Chen X, Ji ZL, Chen YZ. TTD: Therapeutic target database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. doi: 10.1093/nar/30.1.412, PMID 11752352
Huang L, Yu Q, Peng H, Zhen Z. Network pharmacology and molecular docking technology for exploring the effect and mechanism of Radix Bupleuri and Radix Paeoniae Alba herb-pair on anti-hepatitis: A review. Medicine (Baltim). 2023 Dec 1;102(48):e35443. doi: 10.1097/ MD.0000000000035443, PMID 38050220
Daina A, Michielin O, Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 Jul 2;47(W1):W357-64. doi: 10.1093/nar/gkz382, PMID 31106366
Jain NK, Agrawal A, Kulkarni GT, Tailang M. Molecular docking study on phytoconstituents of traditional ayurvedic drug Tulsi (Ocimum sanctum Linn.) against Covid-19 MPRO enzyme: An in-silico Study. Int J Pharm Pharm Sci. 2022 Apr 1;14:44-50. doi: 10.22159/ ijpps.2022v14i4.43181
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017 Jan 4;45(D1):D362-8. doi: 10.1093/nar/gkw937, PMID 27924014
Bateman A, Martin MJ, Orchard S, Magrane M, Ahmad S, Alpi E, et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023 Jan 6;51(D1):D523-31.
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016 Jun 20;54(1):1.30.1-33. doi: 10.1002/cpbi.5, PMID 27322403
Liu W, Fan Y, Tian C, Jin Y, Du S, Zeng P, et al. Deciphering the molecular targets and mechanisms of HGWD in the treatment of rheumatoid arthritis via network pharmacology and molecular docking. Evid Based Complement Alternat Med. 2020 Jan 26;2020(1):7151634. doi: 10.1155/2020/7151634, PMID 32908565
Pandey N, Karthik VP, Selva P, Hazeena P. Pharmacology-based drug repurposing study of levetiracetam uncovers its interaction with multi-drug targets in Parkinson’s disease. Int J Appl Pharm. 2024 Nov 7;6:69-78. doi: 10.22159/ijap.2024v16i6.51887
Gadelha Militao GC, Pessoa CO, Costa-Lotufo LV, Amaral de Moraes ME, de Moraes MO, Silva Luciano JH, et al. Cytotoxicity of flavonoids isolated from Alibertia myrciifolia. Pharm Biol. 2005 Jan 7;43(5):480-4.
Kumar D, Tejaswi C, Rasamalla S, Mallick S, Pala BC. Bio-assay guided isolation of anti-cancer compounds from Anthocephalus cadamba Bark. Nat Prod Commun. 2015 Aug 1;10(8):1349-50. doi: 10.1177/1934578X1501000807, PMID 26434112
Mishra DP, Khan MA, Yadav DK, Rawat AK, Singh RK, Ahamad T, et al. Monoterpene indole alkaloids from Anthocephalus cadamba Fruits exhibiting anticancer activity in human lung cancer cell Line H1299. ChemistrySelect. 2018 Aug 7;3(29):8468-72. doi: 10.1002/ slct.201801475
Sakato K, Tanaka H, Mukai N, Misawa M. Isolation and identification of camptothecin from cells of Camptotheca acuminata suspension cultures. Agric Biol Chem. 1974 Jan 9;38(1):217-8. doi: 10.1080/00021369.1974.10861136
Zhang J, Yu Y, Liu D, Liu Z. Extraction and composition of three naturally occurring anti-cancer alkaloids in Camptotheca acuminata seed and leaf extracts. Phytomedicine. 2007 Jan;14(1):50-6. doi: 10.1016/j.phymed.2006.11.004, PMID 17137773
Chen P, Ye Q, Liang S, Zeng L. Cephaeline promotes ferroptosis by targeting NRF2 to exert anti-lung cancer efficacy. Pharm Biol. 2024 Dec 31;62(1):195-206. doi: 10.1080/13880209.2024.2309891, PMID 38339810
Cheng GG, Cai XH, Zhang BH, Li Y, Gu J, Bao MF, et al. Cinchona alkaloids from Cinchona succirubra and Cinchona ledgeriana. Planta Med. 2014 Jan 22;80(2-3):223-30. doi: 10.1055/s-0033-1360279, PMID 24452461
Staerk D, Lemmich E, Christensen J, Kharazmi A, Olsen CE, Jaroszewski JW. Leishmanicidal, antiplasmodial and cytotoxic activity of indole alkaloids from Corynanthe Pachyceras. Planta Med. 2000 Aug;66(6):531-6. doi: 10.1055/s-2000-8661, PMID 10985079
Kato NN, Stavis VK, Boaretto AG, Castro DT, Alves FM, de Picoli Souza K, et al. Application of the metabolomics approach to the discovery of active compounds from Brazilian trees against resistant human melanoma cells. Phytochem Anal. 2021 Nov 25;32(6):992-1002. doi: 10.1002/pca.3041, PMID 33634541
Prakash Chaturvedula VS, Schilling JK, Johnson RK, Kingston DG. New cytotoxic Lupane triterpenoids from the twigs of Coussarea paniculata. J Nat Prod. 2003 Mar 1;66(3):419-22. doi: 10.1021/ np0204848, PMID 12662105
Olmedo D, Rodríguez N, Vásquez Y, Solís PN, López-Pérez JL, Feliciano AS, et al. A new coumarin from the fruits of Coutarea hexandra. Nat Prod Res. 2007 Jun;21(7):625-31. doi: 10.1080/14786410701371116, PMID 17613820
Tomás-Barberán FA, Hostettmann K. A cytotoxic triterpenoid and Flavonoids from Crossopteryx febrifuga. Planta Med. 1988 Jun 24;54(3):266-7. doi: 10.1055/s-2006-962425, PMID 3174864
Wu XD, He J, Li XY, Dong LB, Gong X, Gao X, et al. Triterpenoids and steroids with cytotoxic activity from Emmenopterys henryi. Planta Med. 2013 Jul 23;79(14):1356-61. doi: 10.1055/s-0033-1350645, PMID 23881457
Ito A, Chai HB, Shin YG, García R, Mejía M, Gao Q, et al. Cytotoxic constituents of the roots of Exostema acuminatum. Tetrahedron. 2000 Aug;56(35):6401-5. doi: 10.1016/S0040-4020(00)00584-6
Toktas U, Sarikahya NB, Parlak C, Ozturk I, Kayalar H. A new iridoid skeleton from Galium asparagifolium and biological activity studies. J Mol Struct. 2022 Feb;1250:131693. doi: 10.1016/j. molstruc.2021.131693
Maurya P, Singh S, Gupta MM, Luqman S. Characterization of bioactive constituents from the gum resin of Gardenia lucida and its pharmacological potential. Biomed Pharmacother. 2017 Jan;85:444-56. doi: 10.1016/j.biopha.2016.11.049, PMID 27899258
Mohamed S, Ross S, Mohamed N. Exploration of components contributing to potent cytotoxicity of Gardenia thunbergia L. F. against human leukemia and hepatoma. Bol PharmSci Assiut. 2022 Jun 1;45(1):153-62. doi: 10.21608/bfsa.2022.239374
Thanasansurapong S, Tuchinda P, Reutrakul V, Pohmakotr M, Piyachaturawat P, Chairoungdua A, et al. Cytotoxic and anti-HIV-1 activities of triterpenoids and flavonoids isolated from leaves and twigs of Gardenia sessiliflora. Phytochem Lett. 2020 Feb;35:46-52. doi: 10.1016/j.phytol.2019.10.007
de Oliveira PR, Testa G, Medina RP, de Oliveira CM, Kato L, da Silva CC, et al. Cytotoxic activity of Guettarda pohliana Müll. Arg. (Rubiaceae). Nat Prod Res. 2013 Sep;27(18):1677-81. doi: 10.1080/14786419.2012.761616
Maamoun M, El Sawi S, Motawe H, Fekry M, Abdel Kawy M. Chemical characterization of constituents isolated from Hamelia patens and investigating its cytotoxic activity. Egypt J Chem. 2019 Mar 25;62(9):1685-97. doi: 10.21608/ejchem.2019.10112.1667
Chen YH, Chang FR, Wu CC, Yen MH, Liaw CC, Huang HC, et al. New cytotoxic 6-oxygenated 8,9-Dihydrofurocoumarins, Hedyotiscone A −C, from Hedyotis biflora. Planta Med. 2006 Nov;72(1):75-8. doi: 10.1055/s-2005-873178, PMID 16450302
Lee HZ, Bau DT, Kuo CL, Tsai RY, Chen YC, Chang YH. Clarificationof the phenotypic Characteristics and anti-tumor Activity of Hedyotis diffusa. Am J Chin Med. 2011 Jan 5;39(1):201-13. doi: 10.1142/ S0192415X11008750, PMID 21213409
Comini LR, Fernandez IM, Rumie Vittar NB, Núñez Montoya SC, Cabrera JL, Rivarola VA. Photodynamic activity of anthraquinones isolated from Heterophyllaea pustulata Hook. f. Phytomedicine. 2011 Sep;18(12):1093-5. doi: 10.1016/j.phymed.2011.05.008, PMID 21665453
Moyo AA, Jagadhane KS, Bhosale SR, Shinde SB, Marealle AI, Shimpale VB, et al. Anticancer and apoptotic effects of Hymenodictyon floribundum (Hochst. & Steud.) B.L. Rob. Stem Bark hydroethanolic extract. Chem Afr. 2024 Apr 21;7(3):1235-50.
Lee CL, Liao YC, Hwang TL, Wu CC, Chang FR, Wu YC. Ixorapeptide I and ixorapeptide II, bioactive peptides isolated from Ixora coccinea. Bioorg Med Chem Lett. 2010 Dec;20(24):7354-7. doi: 10.1016/j. bmcl.2010.10.058, PMID 21106454
Chen XJ, Liu ZB, Li X, Pu XM, Mei MJ, Pu XY, et al. 3-Hydroxymorindone from Knoxia roxburghii (Spreng.) M.A. Rau induces ROS-mediated mitochondrial dysfunction cervical cancer cells apoptosis via inhibition of PI3K/AKT/NF-κB signaling pathway. J Funct Foods. 2023 Apr;103:105498. doi: 10.1016/j. jff.2023.105498
Chee CW, Zamakshshari NH, Lee VS, Abdullah I, Othman R, Lee YK, et al. Morindone from Morinda citrifolia as a potential antiproliferative agent against colorectal cancer cell lines. PLoS One. 2022 Jul 12;17(7):e0270970. doi: 10.1371/journal.pone.0270970, PMID 35819953
Chokchaisiri S, Siriwattanasathien Y, Thongbamrer C, Suksamrarn A, Rukachaisirikul T. Morindaquinone, a new bianthraquinone from Morinda coreia roots. Nat Prod Res. 2021 Oct 18;35(20):3439-45. doi: 10.1080/14786419.2019.1705820, PMID 31876434
Latifah SY, Gopalsamy B, Abdul Rahim R, Manaf Ali A, Haji Lajis N. Anticancer potential of damnacanthal and Nordamnacanthal from Morinda elliptica Roots on T-lymphoblastic leukemia cells. Molecules. 2021 Mar 12;26(6):1554. doi: 10.3390/molecules26061554, PMID 33808969
Cimanga RK, Kambu K, Tona L, Hermans N, Apers S, Totté J, et al. Cytotoxicity and in vitro susceptibility of Entamoeba histolytica to Morinda morindoides leaf extracts and its isolated constituents. J Ethnopharmacol. 2006 Aug;107(1):83-90. doi: 10.1016/j. jep.2006.02.010, PMID 16603327
Chiou CT, Hsu RY, Lin LC. Isolation and cytotoxic effect of anthraquinones from Morinda umbellata. Planta Med. 2014 Aug 19;80(13):1113-7. doi: 10.1055/s-0034-1382956, PMID 25137574
Tri MD, Tram TT, Ngoc LH, An TN, Phat NT, Minh PN, et al. Recurvataside, a new saponin from aerial parts of Mussaenda recurvata. Nat Prod Res. 2023 Jul 18;37(14):2303-10. doi: 10.1080/14786419.2022.2039137, PMID 35176920
Liu YP, Ju PK, Long JT, Lai L, Zhao WH, Zhang C, et al. Cytotoxic indole alkaloids from Nauclea orientalis. Nat Prod Res. 2018 Dec 17;32(24):2922-7. doi: 10.1080/14786419.2017.1395429, PMID 29072098
Kuete V, Sandjo LP, Mbaveng AT, Seukep JA, Ngadjui BT, Efferth T. Cytotoxicity of selected Cameroonian medicinal plants and Nauclea pobeguinii towards multi-factorial drug-resistant cancer cells. BMC Complement Altern Med. 2015 Dec 4;15(1):309. doi: 10.1186/s12906- 015-0841-y, PMID 26341728
Chang FP, Chao W, Wang SY, Huang HC, Sung PJ, Chen JJ, et al. Three new iridoid derivatives have been isolated from the stems of Neonauclea reticulata (havil.) Merr. with cytotoxic Activity on Hepatocellular Carcinoma Cells. Molecules. 2018 Sep 8;23(9):2297. doi: 10.3390/molecules23092297, PMID 30205569
Mahibalan S, Rao PC, Khan R, Basha A, Siddareddy R, Masubuti H, et al. Cytotoxic constituents of Oldenlandia umbellata and isolation of a new symmetrical coumarin dimer. Med Chem Res. 2016 Mar 11;25(3):466-72. doi: 10.1007/s00044-015-1500-z
Viet Cuong LC, Anh LT, Huu Dat TT, Anh TT, Lien LQ, Kim YH, et al. Cytotoxic and anti-inflammatory activities of secondary metabolites from Ophiorrhiza baviensis growing in Thua Thien Hue, Vietnam. Nat Prod Res. 2021 Nov 17;35(22):4218-24. doi: 10.1080/14786419.2019.1693564, PMID 31773982
Liu H, Liao W, Fan L, Zheng Z, Liu D, Zhang QW, et al. Ethanol extract of Ophiorrhiza pumila suppresses liver cancer cell proliferation and migration. Chin Med. 2020 Dec 31;15(1):11. doi: 10.1186/s13020-020- 0291-4, PMID 32021647
Baskar AA, Ignacimuthu S, Michael GP, Al Numair K. Cancer chemopreventive Potential of Luteolin-7-O-Glucoside Isolated from Ophiorrhiza mungos Linn. Nutr Cancer. 2010;63(1):1-9.
Kuete V, Donfack AR, Mbaveng AT, Zeino M, Tane P, Efferth T. Cytotoxicity of anthraquinones from the roots of Pentas schimperi towards multi-factorial drug-resistant cancer cells. Investig New Drugs. 2015 Aug 27;33(4):861-9. doi: 10.1007/s10637-015-0268-9, PMID 26115800
Chaipukdee N, Kanokmedhakul K, Kanokmedhakul S, Lekphrom R, Pyne SG. Two new bioactive iridoids from Rothmannia wittii. Fitoterapia. 2016 Sep;113:97-101. doi: 10.1016/j.fitote.2016.07.007, PMID 27431771
Bajpai VK, Alam MB, Quan KT, Choi HJ, An H, Ju MK, et al. Cytotoxic properties of the anthraquinone derivatives isolated from the roots of Rubia philippinensis. BMC Complement Altern Med. 2018 Dec 3;18(1):200. doi: 10.1186/s12906-018-2253-2, PMID 29970094
Kuang B, Han J, Zeng GZ, Chen XQ, He WJ, Tan NH. Three new triterpenoids from Rubia schumanniana. Nat Prod Bioprospect. 2012 Aug 12;2(4):166-9. doi: 10.1007/s13659-012-0038-8
Li L, Wang J, Feng L, Fan J, Wang J, Tan N, et al. Rubioncolin C, a natural naphthohydroquinone dimer isolated from Rubia yunnanensis, inhibits the proliferation and metastasis by inducing ROS-mediated apoptotic and autophagic cell death in triple-negative breast cancer cells. J Ethnopharmacol. 2021 Sep;277:114184. doi: 10.1016/j. jep.2021.114184, PMID 33961996
Wang L, Chen GY, Han CR, Yuan Y, Yang B, Zhang Y, et al. Two novel alkaloids from the stem of Saprosma hainanense and their cytotoxic activities in vitro. Chem Pharm Bull (Tokyo). 2011;59(3):338-40. doi: 10.1248/cpb.59.338, PMID 21372415
Sun G, Zhang X, Xu X, Yang J, Zhong M, Yuan J. A new triterpene from the plant of Uncaria macrophylla. Molecules. 2012 Jan 5;17(1):504-10. doi: 10.3390/molecules17010504, PMID 22222909
Yu G, Wang LG, Han Y, He QY. Clusterprofiler: An R package for comparing biological themes among gene clusters. OMICS A J Integr Biol. 2012 May;16(5):284-7. doi: 10.1089/omi.2011.0118, PMID 22455463
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000 May;25(1):25-9. doi: 10.1038/75556, PMID 10802651
Tanabe M, Kanehisa M. Using the KEGG database resource. Curr Protoc Bioinformatics. 2012 Jun;Chapter 1:1.12.1-43. doi: 10.1002/0471250953.bi0112s38, PMID 22700311
Shashank Tiwari KP. Unrevealing the complex interplay: Molecular docking: A comprehensive review on current scenario, upcoming difficulties. Initiatives, and viewpoints. Int J Chem Res. 2024 Jan 1;8:1-9.
Ongko J, Setiawan JV, Feronytha AG, Juliana A, Effraim A, Wahjudi M, et al. In-silico screening of inhibitor on protein epidermal growth factor receptor (EGFR). IOP Conf Ser Earth Environ Sci. 2022 Jun 1;1041(1):012075. doi: 10.1088/1755- 1315/1041/1/012075
Bello M. Binding mechanism of kinase inhibitors to EGFR and T790M, L858R and L858R/T790M mutants through structural and energetic analysis. Int J Biol Macromol. 2018 Oct;118(B):1948-62. doi: 10.1016/j.ijbiomac.2018.07.042, PMID 30017980
Franco BB, Pandiyarajan Agilandeswari LK. Computational screening of potent anti-inflammatory compounds for human mitogen-activated protein kinase: A comprehensive and combined in silico approach. Int J Curr Pharm Res. 2024 Nov 15;16:21-32.
Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023 Aug 17;13(1):13398. doi: 10.1038/s41598-023-40160-2, PMID 37592012
Warrier KC. Haldina cordifolia (Roxb.) Ridsdale - A promising tree for domestication. Int J Agric Environ Biotechnol. 2019 Sep 24;12(3). doi: 10.30954/0974-1712.08.2019.6
Tahia F, Sikder MA, Al-Mansur MA, Rashid MA. Bioactivities of Adina cordifolia (Roxb.) Hook. F. - growing in Bangladesh. Bangladesh J Bot. 2019;48(2):307-13. doi: 10.3329/bjb.v48i2.47672
Raypa P, Verma AK, Tewari S, Dubey A. Analysis of medicinally important phytocompounds from Adina cordifolia Leaves. Int J Curr Microbiol Appl Sci. 2018 Nov 20;7(11):3007-19. doi: 10.20546/ ijcmas.2018.711.345
Roshan AV. Pharmacological activity of Adina cordifolia: A review. Asian J Res PharmSci Biotechnol. 2021;9(4):162-8. 89. Sangameswaran B. Anticancer activity of Adina cordifolia against Ehrlich Ascites Carcinoma (EAC) in mice. Contin J Pharmacol Toxicol Res. 2012;5(1):7-16.
Jena A, Biswal B, Parida SK. A review on pharmacological activity of Borreria articularis. Int J Biol Pharm Allied Sci. 2022 Aug 1;11(8):11.
Conserva LM, Ferreira JC. Borreria and Spermacoce species (Rubiaceae): A review of their ethnomedicinal properties, chemical constituents, and biological activities. Pharmacogn Rev. 2012 Jan;6(11):46-55. doi: 10.4103/0973-7847.95866, PMID 22654404
Mukherjee KS, Mukhopadhyay B, Mondal S, Gorai D. Triterpenoid constituents of Borreria articularis. J Chin Chem Soc. 2004;51:229-31.
Rupachandra S, Sarada DV. Anticancer activity of methanol extract of the seeds of Borreria hispida and Momordica dioica. J Pharm Res. 2013 May;6(5):565-8. doi: 10.1016/j.jopr.2013.04.027
Vuyyuri B, Tripurana R, Gangeyula J, Ali F. Anti-inflammatory activity of ethanolic extract of Canthium dicoccum. Int J Pharm Phytopharmacol Res. 2013;3(3):226-30.
Meghashree KS, Latha KP, Vagdevi HM, Ajish AD, Jayanna ND. Screening of phytochemical content and in vitro biological investigation of Canthium dicoccum (Gaertn.) and Amischophacelus axillaris (L.). Asian J Pharm Clin Res.2019 Nov 16;13:109-14.
Herath WH, Sultanbawa MU, Wannigama GP, Cavé A. Alkaloidal and other constituents of Uncaria elliptica and Canthium dicoccum. Phytochemistry. 1979 Jan;18(8):1385-7. doi: 10.1016/0031-9422(79)83028-9
Tchamgoue J, Tchokokam YR, Ngouonpe AW, Ngandjui YA, Tiani GL, Msagati TA, et al. The genus Canthium: A comprehensive summary on its traditional use, phytochemistry, and pharmacological activities. Fitoterapia. 2024 Jan;172:105754. doi: 10.1016/j.fitote.2023.105754, PMID 37992781
Meghashree KS, Latha KP. In vitro anticancer activity of Canthium dicoccum (Gaertn.) against lung cancer cell Line. Plant Arch. 2020;20(2):3464-6.
Kumar J, Koti BC, Jeedi NM. Evaluation of Canthium parviflorum on experimentally induced ulcer in rats. Asian J Pharm Pharmacol. 2019 Oct;5(6):1230-6. doi: 10.31024/ajpp.2019.5.6.22
Karthick KA, Bhuvaneshwari DS, Umapathi D, Raja PB. Benign approach of Canthium parviflorum as a bioinhibitor for mild steel corrosion in 0.5 M H2 SO4 Medium. Surf Rev Lett. 2020 Sep 24;27(9):1950208. doi: 10.1142/S0218625X19502081
Prabhu P. GC-MS analysis of ethanolic extract of Canthium parviflorum Lamk Leaf. J Appl Pharm Sci. 2013 Feb 28;3:166-8.
Reddy Palvai V, Mahalingu S, Urooj A. Canthium parviflorum leaves: Antioxidant activity in food and biological systems, pH, and temperature stability. Chinese J Biol. 2014 Apr 10;2014:1-7.
De Wilde WJ, Duyfjes BE. The genus Canthium (Rubiaceae, Vanguerieae) in Thailand, with a note on the typification of the genus. Thai Forest Bull Bot. 2022;50:161-80. doi: 10.20531/tfb.2022.50.2.16
Purushoth PT, Panneerselvam P, Selvakumari S SD. In vitro and in vivo anticancer activity of ethanolic extract of Canthium parviflorum Lam. on DLA and Hela cell lines. Int J Drug Dev Res. 2011;3(4):280-5.
ALAsmari KM, Abu Zeid IM, Al-Attar AM. Medicinal properties of arabica coffee (Coffea arabica) Oil: an Overview. Adv Life Sci. 2020;8(1):20-9. doi: 10.62940/als.v8i1.1024
Bisht S, Sisodia S. Coffea arabica: A wonder gift to medical science. J Nat Pharm. 2010;1(1):58. doi: 10.4103/2229-5119.73595
Gallardo-Ignacio J, Santibáñez A, Oropeza-Mariano O, Salazar R, Montiel-Ruiz RM, Cabrera-Hilerio S, et al. Chemical and biological characterization of green and processed coffee beans from Coffea arabica varieties. Molecules. 2023 Jun 10;28(12):4685. doi: 10.3390/ molecules28124685, PMID 37375240
Prandi B, Ferri M, Monari S, Zurlini C, Cigognini I, Verstringe S, et al. Extraction and chemical characterization of functional phenols and proteins from coffee (Coffea arabica) By-Products. Biomolecules. 2021 Oct 22;11(11):1571. doi: 10.3390/biom11111571, PMID 34827569
Polamuri D, Valentina CG, Suresh R, Islam A. In-vitro anticancer and antioxidant activity of green coffee beans extract. Asian Food Sci J. 2020 Jul 29;17:24-35. doi: 10.9734/afsj/2020/v17i230188
Bradic J, Jeremic N, Petkovic A, Jeremic J, Zivkovic V, Srejovic I, et al. Cardioprotective effects of Galium verum L. extract against myocardial ischemia-reperfusion injury. Arch Physiol Biochem. 2020 Oct 19;126(5):408-15. doi: 10.1080/13813455.2018.1551904, PMID 30632812
Farcas AD, Mot AC, Zagrean-Tuza C, Toma V, Cimpoiu C, Hosu A, et al. Chemo-mapping and biochemical-modulatory and antioxidant/ prooxidant effect of Galium verum extract during acute restraint and dark stress in female rats. PLoS One. 2018 Jul 3;13(7):e0200022. doi: 10.1371/journal.pone.0200022, PMID 29969484
Turcov D, Barna AS, Trifan A, Blaga AC, Tanasă AM, Suteu D. Antioxidants from Galium verum as ingredients for the design of new Dermatocosmetic products. Plants (Basel). 2022 Sep 20;11(19):2454. doi: 10.3390/plants11192454, PMID 36235320
Laanet PR, Saar-Reismaa P, Jõul P, Bragina O, Vaher M. Phytochemical screening and antioxidant activity of selected Estonian Galium species. Molecules. 2023 Mar 22;28(6):2867. doi: 10.3390/ molecules28062867, PMID 36985838
Semenescu AD, Moacă EA, Iftode A, Dehelean CA, Tchiakpe-Antal DS, Vlase L, et al. Phytochemical and nutraceutical screening of ethanol and ethyl acetate phases of Romanian Galium verum Herba (Rubiaceae). Molecules. 2023 Nov 27;28(23):7804. doi: 10.3390/molecules28237804, PMID 38067535
Pashapour S, Heshmati M, Mousavi Z, Esmaeili S. The effects of methanolic extract of the aerial parts of Galium verum on HT29 and AGO cell lines. Nucleus. 2022 Aug 22;65(2):223-32. doi: 10.1007/ s13237-021-00380-1
Semenescu AD, Moacă EA, Chioibaş R, Iftode A, Tchiakpe-Antal DS, Vlase L, et al. Galium verum L. petroleum ether extract - antitumor potential on human melanoma cells. Ann Chim. 2023 Jul 1;34(2):140-9. doi: 10.2478/auoc-2023-0018
Pashapour S, Heshmati M, Mousavi Z, Esmaeili S. The cytotoxicity of the chloroform and petroleum ether fractional extracts of Galium verum L. in HepG2 and HT29 cell lines. J Kermanshah Univ Med Sci. 2020 Jul 15;24(2). doi: 10.5812/jkums.101079
Dwarai S, Sankunni LM. Antiproliferative effects of the root bark of Gardenia gummifera L. f on HepG2 cell lines. Int J Pharm Sci Drug Res. 2021 Jul 30:361-70. doi: 10.25004/IJPSDR.2021.130401
Kim ES, Jeong CS, Moon A. Genipin, a constituent of Gardenia jasminoides Ellis, induces apoptosis and inhibits invasion in MDA-MB-231 breast cancer cells. Oncol Rep. 2012;27(2):567-72. doi: 10.3892/or.2011.1508, PMID 22020372
Artanti N, Hanafi M, Andriyani R, Vienna S, Zalinar U, Lotulung PD, et al. UY. Isolation of an anticancer asperuloside from Hedyotis corymbosa L. J Trop Life Sci. 2015;5(2):98-104.
Novitasari D, Handayani S, Jenie RI. Ethanolic extract of Hedyotis corymbosa L. inhibits migration and MMP-9 activity on metastatic breast cancer cells. Indones J Cancer Chemoprevent. 2018 Feb 28;9(1):16. doi: 10.14499/indonesianjcanchemoprev9iss1pp16-22
Permana S, Nurzaidah L, Widodo E, Anita KW, Nugraheni RW, Kawamoto Y, et al. Anticancer activity of Hedyotis corymbosa nanoliposomes targeting estrogen receptor-alpha in breast cancer cells: In silico and in vitro studies. J Pharm Pharmacogn Res. 2024 Mar 1;12(2):303-22. doi: 10.56499/jppres23.1783_12.2.303
Liu Z, Liu M, Liu M, Li J. Methylanthraquinone from Hedyotis diffusa WILLD induces Ca2+-mediated apoptosis in human breast cancer cells. Toxicol In Vitro. 2010 Feb;24(1):142-7.
Zhang P, Zhang B, Gu J, Hao L, Hu F, Han C. The study of the effect of Hedyotis diffusa on the proliferation and the apoptosis of the cervical tumor in nude mouse model. Cell Biochem Biophys. 2015 Jul 13;72(3):783-9. doi: 10.1007/s12013-015-0532-9, PMID 25677988
Gopal R. Anticancer activity of noni fruit (Morinda citrifolia) extracts against human hepatocellular carcinoma cell line (HepG-2) and its appototic mechanism. Int J Zool Investig. 2022;8(2):107-16.
Pappachen LK, Sreelakshmi KS. Phytochemical screening and in vitro cytotoxicity studies of Mussaenda frondosa Linn Leaves. Res J Pharm Technol. 2017;10(12):4227. doi: 10.5958/0974-360X.2017.00774.0
Khandelwal V, Choudhary PK. Antioxidant and anticancer potential of Neolamarckia cadamba (Roxb.) Bark extract. J Exp Biol Agric Sci. 2020;8(3):334-8.
Kumar PP, Naresh K, Farhat F, Ramya K, Goud SK. As anticanc act phytochem constit Neolamarckia cadamba (Roxb.) stem bark using molecular docking studies. YMER. 2022;21(7):435-50.
Purankar M, Sawarkar A, Ap S, Hedau M, Patil M, Umap S. Evaluation of serum biochemical and anti-cancerous activity of Neolamarckia cadamba against DMBA induced in Wistar rats. Int J Adv Biochem Res. 2024 Jan 1;8(4S):382-6. doi: 10.33545/26174693.2024.v8.i4Se.1016
Madhavan V, Murali A. Anticancer activity of extracts of leaf of Ophiorrhiza mungos L. on dalton’s ascitic lymphoma in mice. SASTech-Tech J RUAS. 2015;14(1):29-32.
Suma D, Raji RN, Latha MS. Gardenia gummifera L. F: A review of its bioactive compounds and ethnomedicinal properties. Int J Pharmacogn Phytochem Res. 2021;13(4):29-37.
Jangam KK, Vikhe DN, Jadhav RS. Pharmacognostic, phytochemical and pharmacological Study on Gardenia gummifera. Int J Adv Res Sci Commun Technol. 2022 Feb 17;2:336-44. 133. Vinaykumar NM, Mahmood R, Krishna V, Ravishankara B, Shastri SL. Antioxidant and in vivo hepatoprotective effects of Gardenia gummifera L.f. fruit methanol extract. Clin Phytosci. 2020 Dec 12;6(1):47. doi: 10.1186/s40816-020-00188-7
Ayuni R, Andayani A. Review: Phytochemical screening and antioxidant activity from several parts of Gardenia jasminoides J. Ellis. IOSR J Pharm Biol Sci. 2022;17(4):24-38.
Yin F, Liu J. Research and application progress of Gardenia jasminoides. Chin Herb Med. 2018 Oct;10(4):362-70. doi: 10.1016/j. chmed.2018.09.001
Wang J, Lu J, Lv C, Xu T, Jia L. Three new triterpenoid saponins from root of Gardenia jasminoides Ellis. Fitoterapia. 2012 Dec;83(8):1396-401. doi: 10.1016/j.fitote.2012.07.004, PMID 22796399
Phatak RS. Phytochemistry, pharmacological activities and intellectual property landscape of Gardenia jasminoides Ellis: A review. Pharmacogn J. 2015 Jul 8;7(5):254-65. doi: 10.5530/pj.2015.5.1
Chen L, Li M, Yang Z, Tao W, Wang P, Tian X, et al. Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. J Ethnopharmacol. 2020 Jul;257:112829. doi: 10.1016/j.jep.2020.112829, PMID 32311486
de Oliveira PR, Testa G, de Sena SB, da Costa WF, Sarragiotto MH, Santin SM, et al. Saponinas triterpenicas das raizes de Guettarda pohliana Müll. Arg. (Rubiaceae). Quim Nova. 2008;31(4):755-8.
Testa G, de Oliveira PR, da Silva CC, Schuquel IT, Santin SM, Kato L, et al. Constituintes quimicos das folhas e avaliacao da atividade anti-inflamatoria de extratos das raizes e folhas de Guettarda pohliana Mull. Arg. (Rubiaceae). Quim Nova. 2012;35(3):527-9.
Sadasivan S, Latha PG, Sasikumar JM, Rajashekaran S, Shyamal S, Shine VJ. Hepatoprotective studies on Hedyotis corymbosa (L.) Lam. J Ethnopharmacol. 2006 Jun;106(2):245-9. doi: 10.1016/j. jep.2006.01.002, PMID 16495024
Le AT, Yu JK, Han GD, Do TK, Chung YS. Potential use of colored LED lights to increase the production of bioactive metabolites Hedyotis corymbosa (L.) Lam. Plants (Basel). 2022 Jan 15;11(2):225. doi: 10.3390/plants11020225, PMID 35050113
Lin CC, Ng LT, Yang JJ, Hsu YF. Anti-inflammatory and hepatoprotective activity of peh-Hue-Juwa-Chi-Cao in male rats. Am J Chin Med. 2002 Jan 30;30(2-3)(02n03):225-34. doi: 10.1142/ S0192415X02000405, PMID 12230011
Ahmad R, Ali AM, Israf DA, Ismail NH, Shaari K, Lajis NH. Antioxidant, radical-scavenging, anti-inflammatory, cytotoxic and antibacterial activities of methanolic extracts of some Hedyotis species. Life Sci. 2005 Mar;76(17):1953-64. doi: 10.1016/j. lfs.2004.08.039, PMID 15707878
Ahmad R, Shaari K, Lajis NH, Hamzah AS, Ismail NH, Kitajima M. Anthraquinones from Hedyotis capitellata. Phytochemistry. 2005 May;66(10):1141-7. doi: 10.1016/j.phytochem.2005.02.023, PMID 15924918
Li C, Xue X, Zhou D, Zhang F, Xu Q, Ren L, et al. Analysis of iridoid glucosides in Hedyotis diffusa by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal. 2008 Sep;48(1):205-11. doi: 10.1016/j. jpba.2008.05.013, PMID 18579330
Ali M, Singh P, Singh L KS. Phytochemical constituents and pharmacological activities, profile of Morinda citrifolia: A review. World J Pharm Res. 2020;9(14):421-33.
Chanthira Kumar H, Lim XY, Mohkiar FH, Suhaimi SN, Mohammad Shafie N, Chin Tan TY. Efficacy and safety of Morinda citrifolia L. (Noni) as a potential anticancer agent. Integr Cancer Ther. 2022 Jan 30;21:15347354221132848. doi: 10.1177/15347354221132848, PMID 36448674
Kitic D, Miladinovic B, Randjelovic M, Szopa A, Seidel V, Prasher P, et al. Anticancer and chemopreventive potential of Morinda citrifolia L. bioactive compounds: A comprehensive update. Phytother Res. 2024 Apr 15;38(4):1932-50. doi: 10.1002/ptr.8137, PMID 38358681
Brown AC. Anticancer activity of Morinda citrifolia (Noni) Fruit: A review. Phytother Res. 2012 Oct 17;26(10):1427-40. doi: 10.1002/ ptr.4595, PMID 22344842
Thakur Babita Kanwar R. An overview of flowering pot plants for tropical and subtropical climate. Int J Sci Res. 2023 Jul 5;12(7):1274-80.
Manasa DJ, Chandrashekar KR, Madhu Kumar DJ, Niranjana M, Navada KM. Mussaenda frondosa L. mediated facile green synthesis of copper oxide nanoparticles – characterization, photocatalytic and their biological investigations. Arab J Chem. 2021 Jun;14(6):103184. doi: 10.1016/j.arabjc.2021.103184
Qureshi AK, Liew SY, Othman NA, Awang K. Phytochemical constituents from Neolamarckia cadamba (Roxb.) Bosser. Biochem Syst Ecol. 2021 Jun;96:104257. doi: 10.1016/j.bse.2021.104257
Singh M, Kumar P, Singh H, Kumar A, Kumar A, Kumar R. Neolamarckia cadamba: A comprehensive review on its physiological, ecological, phytochemical and pharmacological perspectives. Ecol Environ Conserv. 2023 Apr;29:241-50. doi: 10.53550/EEC.2023. v29i02s.042
Pandey A, Negi PS. Traditional uses, phytochemistry and pharmacological properties of Neolamarckia cadamba: A review. J Ethnopharmacol. 2016 Apr;181:118-35. doi: 10.1016/j. jep.2016.01.036, PMID 26821190
Patowary R, Lal Sharma C. Ethnopharmacological properties and therapeutics uses of Ophiorrhiza mungos Linn: A review. Int J Adv Res. 2023 Mar 31;11(3):230-5. doi: 10.21474/IJAR01/16412
Gopalakrishnan K, Krishnan S, Peringattulli Narayanan K. Tissue culture studies and estimation of camptothecin from Ophiorrhiza prostrata D. Don. Indian J Plant Physiol. 2018 Sep 17;23(3):582-92. doi: 10.1007/s40502-018-0391-7
Madhavan V, Yoganarasimhan S, Gurudeva M, John C, Deveswaran R. Pharmacognostical studies on the leaves of Ophiorrhiza mungos. Linn. (Rubiaceae). Spat DD Peer Rev J Complement Med Drug Discov. 2013;3(3):89.
Krishnakumar G, Dintu KP, Varghese SC, Nair DS, Gopinath G, Rameshkumar KB, et al. Ophiorrhiza, a promising herbaceous source of the anticancer compound camptothecin. Plant Sci Today. 2020 May 2;7(2):240. doi: 10.14719/pst.2020.7.2.660
Noori S, Hassan ZM. Dihydroartemisinin shift the immune response towards Th1, inhibit the tumor growth in vitro and in vivo. Cell Immunol. 2011;271(1):67-72. doi: 10.1016/j.cellimm.2011.06.008, PMID 21820106
Dell’Eva R, Pfeffer U, Vené R, Anfosso L, Forlani A, Albini A, et al. Inhibition of angiogenesis in vivo and growth of Kaposi’s sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol. 2004 Dec;68(12):2359-66. doi: 10.1016/j.bcp.2004.08.021, PMID 15548382
Choi MS, Oh JH, Kim SM, Jung HY, Yoo HS, Lee YM, et al. Berberine inhibits p53-dependent cell growth through induction of apoptosis of prostate cancer cells. Int J Oncol. 2009 May;34(5):1221-30. PMID 19360335
Harikumar KB, Kuttan G, Kuttan R. Inhibition of progression of erythroleukemia induced by Friend virus in BALB/c mice by natural products--berberine, curcumin and picroliv. J Exp Ther Oncol. 2008;7(4):275-84. PMID 19227007
Katiyar SK, Meeran SM, Katiyar N, Akhtar S. p53 cooperates berberine‐induced growth inhibition and apoptosis of non‐small cell human lung cancer cells in vitro and tumor xenograft growth in vivo. Mol Carcinog. 2009 Jan 5;48(1):24-37. doi: 10.1002/mc.20453, PMID 18459128
Kumar RS, Kumar SV SP. Anticancer activity of methanolic leaf extract of Morinda tinctoria Roxb. against Ehrlich ascites carcinoma in mice. Bol Pharm Res. 2017;7(2):146.
Lalremruati M, Lalmuansangi C, Zosangzuali M, Tochhawng L, Trivedi AK, Kumar NS, et al. Mussaenda macrophylla Wall. exhibit anticancer activity against Dalton’s lymphoma ascites (DLA) bearing mice via alterations of redox-homeostasis and apoptotic genes expression. J Basic Appl Zool. 2022 Dec 19;83(1):6. doi: 10.1186/ s41936-022-00268-9
Demeke H, Hasen G, Sosengo T, Siraj J, Tatiparthi R, Suleman S. Evaluation of policy governing herbal medicines regulation and its implementation in Ethiopia. J Multidiscip Healthc. 2022 Jun;15:1383-94. doi: 10.2147/JMDH.S366166, PMID 35769191
Moreira D de L, Teixeira SS, Monteiro MH, De-Oliveira AC, Paumgartten FJ. Traditional use and safety of herbal medicines. Rev Bras Farmacogn. 2014 Mar;24(2):248-57. doi: 10.1016/j. bjp.2014.03.006
Kumar V. Herbal medicines: Overview on regulations in India and South Africa. World J Pharm Res. 2017 Aug 1;6:690-8. doi: 10.20959/ wjpr20178-9091
Shankar D, Patwardhan B. AYUSH for New India: Vision and strategy. J Ayurveda Integr Med. 2017 Jul;8(3):137-9. doi: 10.1016/j. jaim.2017.09.001, PMID 28923183
Apolone G, Joppi R, Bertele’ V, Garattini S. Ten years of marketing approvals of anticancer drugs in Europe: Regulatory policy and guidance documents need to find a balance between differentpressures. Br J Cancer. 2005 Sep 23;93(5):504-9. doi: 10.1038/ sj.bjc.6602750, PMID 16136026
Aslantürk Ö, Çelik T, Karabey B, Karabey F. Active phytochemical detecting, antioxidant, cytotoxic, apoptotic activities of ethyl acetate and methanol extracts of Galium aparine L. Br J Pharm Res. 2017 Jan 10;15(6):1-16. doi: 10.9734/BJPR/2017/32762
Farrell AT, Papadouli I, Hori A, Harczy M, Harrison B, Asakura W, et al. The advisory process for anticancer drug regulation: A global perspective. Ann Oncol. 2006 Jun;17(6):889-96. doi: 10.1093/ annonc/mdj099, PMID 16357020
Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S, et al. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules. 2019 Dec 27;10(1):47. doi: 10.3390/biom10010047, PMID 31892257
Calixto JB. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz J Med Biol Res. 2000 Feb;33(2):179-89. doi: 10.1590/s0100- 879x2000000200004, PMID 10657057
da Silva TC, da Silva JM, Ramos MA. What factors guide the selection of medicinal plants in a local pharmacopoeia? A case study in a rural community from a historically transformed Atlantic Forest landscape. Evid Based Complement Alternat Med. 2018 Jan 21;2018(1):2519212. doi: 10.1155/2018/2519212, PMID 29576793
Khan T, Abbasi BH, Khan MA, Shinwari ZK. Differential effects of thidiazuron on production of anticancer phenolic compounds in callus cultures of Fagonia indica. Appl Biochem Biotechnol. 2016 Apr 13;179(1):46-58. doi: 10.1007/s12010-016-1978-y, PMID 26758711
Khan T, Abbasi BH, Khan MA, Azeem M. Production of biomass and useful compounds through elicitation in adventitious root cultures of Fagonia indica. Ind Crops Prod. 2017 Dec;108:451-7. doi: 10.1016/j. indcrop.2017.07.019
Published
How to Cite
Issue
Section
Copyright (c) 2025 Omkar Tipugade, Jyotiram Sawale, Namdeo Jadhav

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.