IDENTIFICATION OF POTENTIAL INHIBITORS OF Α-GLUCOSIDASE ENZYME FROM WITHANIA COAGULANS AND SWIETENIA MACROPHYLLA USING GC-MS PROFILING, IN SILICO MOLECULAR DOCKING AND MOLECULAR DYNAMICS SIMULATION STUDIES

Authors

  • ROSLIN ELSA VARUGHESE Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India.
  • GAYATHRI DASARARAJU Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i8.55102

Keywords:

Withania coagulans, Swietenia macrophylla, AutoDock Vina, Screening, Molecular docking, Molecular dynamics simulation

Abstract

Objective: Diabetes mellitus, a global health concern, is characterized by persistently elevated blood glucose levels, which can lead to damage in various organs over time. The enzyme α-glucosidase plays a critical role in carbohydrate digestion by hydrolyzing complex polysaccharides into absorbable monosaccharides. Inhibition of this enzyme helps attenuate postprandial hyperglycemia by delaying carbohydrate breakdown and absorption. In the present study, we aimed to identify potential natural α-glucosidase inhibitors from the ethyl acetate and ethanol extracts of two medicinally essential plants: Withania coagulans and Swietenia macrophylla.

Methods: Gas chromatography–mass spectrometry analysis was carried out to identify the compounds, which were subjected to virtual screening against α-glucosidase using AutoDock Vina. The top three ligands from each extract were further validated through re-docking using AutoDock 4.2, allowing for detailed analysis of binding energies and interactions within the enzyme’s active site. The top lead compounds from docking results were subjected to molecular dynamics (MD) simulation studies.

Results: Cholest-5-ene-3,16,22,26-tetrol (from W. coagulans) and 1,5-Anhydro-4,6-O-benzylidene-D-glucitol (from S. macrophylla) exhibited better binding energies of –6.66 and –5.64 kcal/mol, respectively, compared to the reference inhibitor acarbose (–4.27 kcal/mol). These lead complexes were further subjected to MD simulations to assess the conformational stability and structural dynamics of the enzyme-compound complexes. The average root-mean-square deviation for the last 50 ns of enzyme-lead complexes was found to be 0.14 and 0.16 nm.

Conclusion: The identified compounds show good binding energy and maintain the hydrogen bond and hydrophobic interactions with active site residues of the enzyme. This study highlights the potential of plant-derived phytochemicals as promising α-glucosidase inhibitors and provides a computational foundation for their further in vitro and in vivo evaluation in the management of diabetes mellitus.

Downloads

Download data is not yet available.

References

1. Akmal M, Patel P, Wadhwa R. Alpha glucosidase inhibitors. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2025. PMID 32496728

2. Maurya R, Akanksha, Jayendra, Singh AB, Srivastava AK. Coagulanolide, a withanolide from Withania coagulans fruits and antihyperglycemic activity. Bioorg Med Chem Lett. 2008 Dec 15;18(24):6534-7. doi: 10.1016/j.bmcl.2008.10.050, PMID 18952419

3. Hemalatha S, Wahi AK, Singh PN, Chansouria JP. Hypoglycemic activity of Withania coagulans Dunal in streptozotocin induced diabetic rats. J Ethnopharmacol. 2004 Aug;93(2-3):261-4. doi: 10.1016/j. jep.2004.03.043, PMID 15234762

4. Budhiraja RD, Sudhir S, Garg KN. Anti-inflammatory activity of 3 beta-hydroxy-2,3-dihydro-withanolide F. Planta Med. 1984 Apr;50(2):134- 6. doi: 10.1055/s-2007-969651, PMID 6548033

5. Qureshi SA, Jahan M, Lateef T, Ahmed D, Rais S, Azmi MB. Presence of gallic acid and rutin improve the hepatoprotective strength of Withania coagulans. Pak J Pharm Sci. 2019 Jan;32(1Suppl):301-8. PMID 30829207

6. Aljohny BO, Anwar Y, Khan SA. In vitro anticancer and antibacterial potentials of selected medicinal plants and isolation and characterization of a natural compound from Withania coagulans. Z Naturforsch C J Biosci. 2022 Jan 14;77(7-8):263-70. doi: 10.1515/znc-2021-0259, PMID 34902232

7. Noreen H, Zaman B. Rahman AU, Hassan W. Antioxidant and antimicrobial efficacies of Withania coagulans seed extract against pathogenic bacteria and fungi. Int J Biotechnol Conscientia Beam. 2016 Oct 20;5(3):45-51. doi: 10.18488/journal.57/2016.5.3/57.3.45.51

8. Shohat B, Kirson I, Lavie D. Immunosuppressive activity of two plant steroidal lactones withaferin A and withanolide E. Biomedicine. 1978 Jan-Feb;28(1):18-24. PMID 27256

9. Pulivarthi V, Josthna P, Naidu CV. In vitro antidiabetic activity by glucose uptake of yeast cell assay and antioxidant potentialof Annona reticulata L. Leaf extracts. Int J Pharm Sci Drug Res. 2020 May;12(3):208-13. doi: 10.25004/IJPSDR.2020.120301

10. Heyninck K, Lahtela-Kakkonen M, Van Der Veken P, Haegeman G, Vanden Berghe W. Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKβ. Biochem Pharmacol. 2014 Oct 15;91(4):501-9. doi: 10.1016/j.bcp.2014.08.004, PMID 25159986

11. White PT, Subramanian C, Motiwala HF, Cohen MS. Natural withanolides in the treatment of chronic diseases. Adv Exp Med Biol. 2016;928:329-73. doi: 10.1007/978-3-319-41334-1_14, PMID 27671823

12. Borah A, Selvaraj S, Holla SR, De S. Analysis of the bioactive components in Swietenia macrophylla leaves for their antibacterial and antioxidant capabilities. Bioresour Technol Rep. 2023 Jun;22:101411. doi: 10.1016/j.biteb.2023.101411

13. Maiti A, Dewanjee S, Jana GK, Mandal S. Hypoglycemic effect of Swietenia macrophylla seeds against type II diabetes. Int J Green Pharm. 2008;2(4):224. doi: 10.4103/0973-8258.44738

14. Moghadamtousi SZ, Goh BH, Chan CK, Shabab T, Kadir HA. Biological activities and phytochemicals of Swietenia macrophylla king. Molecules. 2013 Aug 30;18(9):10465-83. doi: 10.3390/ molecules180910465, PMID 23999722

15. Pamplona S, Sá P, Lopes D, Costa E, Yamada E, E Silva C, et al. In vitro cytoprotective effects and antioxidant capacity of phenolic compounds from the leaves of Swietenia macrophylla. Molecules. 2015 Oct 16;20(10):18777-88. doi: 10.3390/molecules201018777, PMID 26501245

16. Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, Rose DR. Human intestinal maltase-glucoamylase: Crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol. 2008 Jan 18;375(3):782-92. doi: 10.1016/j.jmb.2007.10.069, PMID 18036614

17. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235- 42. doi: 10.1093/nar/28.1.235, PMID 10592235

18. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 update. Nucleic Acids Res. 2023 Jan 6;51(D1):D1373-80. doi: 10.1093/ nar/gkac956, PMID 36305812

19. Pro CD. ??? Version 8.0. Cambridge, MA: Cambridge Soft Corporation; 2004.

20. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: An open chemical toolbox. J Cheminform. 2011 Oct 7;3:33. doi: 10.1186/1758-2946-3-33, PMID 21982300

21. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 30;31(2):455-61. doi: 10.1002/jcc.21334, PMID 19499576

22. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009 Dec;30(16):2785- 91. doi: 10.1002/jcc.21256, PMID 19399780

23. Laskowski RA, Swindells MB. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011 Oct 24;51(10):2778-86. doi: 10.1021/ci200227u, PMID 21919503

24. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015 Sep;1-2:19-25. doi: 10.1016/j.softx.2015.06.001

25. Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E. Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theor Comput. 2010 Feb 9;6(2):459-66. doi: 10.1021/ct900549r, PMID 26617301

26. Bugnon M, Goullieux M, Röhrig UF, Perez MA, Daina A, Michielin O, et al. SwissParam 2023: A modern web-based tool for efficient small molecule parametrization. J Chem Inf Model. 2023 Nov 13;63(21):6469- 75. doi: 10.1021/acs.jcim.3c01053, PMID 37853543

27. Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: A fast force field generation tool for small organic molecules. J Comput Chem. 2011 Aug;32(11):2359-68. doi: 10.1002/jcc.21816, PMID 21541964

28. Xmgrace TP. Version 5.1.19. Center for Coastal and Land-Margin Research. Beaverton, OR: Oregon Graduate Institute of Science and Technology; 2005.

29. Susilawati Y, Megantara S, Levita J. Antidiabetic activity of novel chromene compound isolated from Peperomia pellucida l. Kunth and in silico study against dpp-iv, alpha-glucosidase, alpha-amylase, and aldose reductase for blood glucose homeostasis. Int J Appl Pharm. 2022;14(5):110-6. doi: 10.22159/ijap.2022.v14s5.22

30. Mukka D, Devarakonda KP. GC-MS analysis and molecular docking studies of Laserpitium latifolium L. Extract for anti-diabetic activity. Int J Appl Pharm. 2025;17(1):190-8. doi: 10.22159/ijap.2025v17i1.52343

31. The PyMOL Molecular Graphics System. Version 3.0. Schrödinger, LLC; 2021.

Published

07-08-2025

How to Cite

ROSLIN ELSA VARUGHESE, and GAYATHRI DASARARAJU. “IDENTIFICATION OF POTENTIAL INHIBITORS OF Α-GLUCOSIDASE ENZYME FROM WITHANIA COAGULANS AND SWIETENIA MACROPHYLLA USING GC-MS PROFILING, IN SILICO MOLECULAR DOCKING AND MOLECULAR DYNAMICS SIMULATION STUDIES”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 8, Aug. 2025, pp. 144-51, doi:10.22159/ajpcr.2025v18i8.55102.

Issue

Section

Original Article(s)