EPIDERMAL GROWTH FACTOR RECEPTOR AND PHOSPHODIESTERASE-4 AS THERAPEUTIC TARGETS IN ALLERGIC RHINITIS: A MOLECULAR DOCKING INVESTIGATION OF FLUTICASONE FUROATE AND AZELASTINE HYDROCHLORIDE

Authors

  • SUMITHA A Department of Pharmacology, Faculty of Medicine, Dr. MGR Educational and Research Institute Deemed to be University, Chennai, Tamil Nadu, India. https://orcid.org/0000-0002-4537-7798
  • BRETHIS CS Department of Pharmacology, ACS Medical College, Dr MGR Educational and Research Institute Deemed to be University, Chennai, Tamil Nadu, India. https://orcid.org/0000-0002-1296-5702
  • KARTHIK VP Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India.
  • PURUSHOTHAMAN S Department of Pharmacology, Sri Lalithambigai Medical College, Dr. MGR Educational and Research Institute, Chennai,Tamilnadu,India
  • PUGAZHENDHI S Department of Pulmonary Medicine, SRM Medical College, Chennai, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i9.55197

Keywords:

Allergic Rhinitis, EGFR, Phosphodiesterase-4 (PDE- 4), Molecular Docking, Fluticasone Furoate

Abstract

Objectives: Allergic rhinitis is an immunoglobulin E mediated reaction in the nasal mucosa to inhaled allergens, which affects the quality of life of people. Existing therapies provide inadequate symptom control, which drives investigation of targets in allergic rhinitis, such as epidermal growth factor receptor (EGFR) and phosphodiesterase-4 (PDE-4). Targeting EGFR reduces mucus hypersecretion, epithelial-driven inflammation, and alleviates allergic rhinitis symptoms. PDE-4 inhibitors suppress allergic inflammation. Hence, in this study, we employed docking to study the interactions of fluticasone furoate and azelastine hydrochloride against EGFR and PDE-4.

Methods: Molecular docking was performed using AutoDock Tools 1.5.7 and Molegro molecular viewer. Ligands were optimized using the Merck molecular force field 94 force field. EGFR (Protein Data Bank [PDB] ID: 3POZ) and PDE-4 (PDB ID: 4NW7) structures were retrieved from the PDB. Grid box dimensions were set to 60×60×60 Å, spacing at 0.375 Å, and exhaustiveness was set at 8. Redocking of TAK-285 with EGFR was done to validate the docking protocol. Interactions were analyzed using Discovery Studio Visualizer.

Results: Fluticasone furoate showed stronger binding affinities to EGFR (−9.24 kcal/mol) and PDE-4 (−9.27 kcal/mol) compared to azelastine hydrochloride (−7.15 and −9.23 kcal/mol, respectively). It formed hydrogen bonds and hydrophobic interactions with key residues in both proteins. In contrast, azelastine exhibited fewer interactions. Redocking of TAK-285 confirmed the docking protocol with root mean square deviation <2.0 Å.

Conclusion: Fluticasone furoate demonstrates greater potential to inhibit EGFR and PDE-4, which are pivotal in allergic rhinitis treatment. This study results need further experimental and clinical validation for use in allergic rhinitis patients.

Downloads

Download data is not yet available.

References

1. Ramsridhar S. Allergic rhinitis-induced anxiety and depression: An autobiographical case report. Cureus. 2023 Mar 23;15(3):e36560. doi: 10.7759/cureus.36560, PMID 37102007

2. Husna SM, Tan HT, Shukri N, Ashari NS, Wong KK. Allergic rhinitis: A clinical and pathophysiological overview. Front Med (Lausanne). 2022 Apr 7;9:874114. doi: 10.3389/fmed.2022.874114, PMID 35463011

3. Iordache A, Balica NC, Horhat ID, Morar R, Tischer AA, Milcu AI, et al. A review regarding the connections between allergic rhinitis and asthma - epidemiology, diagnosis and treatment. Curr Health Sci J. 2023 Jan-Mar;49(1):5-18. doi: 10.12865/CHSJ.49.01.5, PMID 37780190

4. Kaczynska A, Klosinska M, Chmiel P, Janeczek K, Emeryk A. The crosstalk between the gut microbiota composition and the clinical course of allergic rhinitis: The use of probiotics, prebiotics and bacterial lysates in the treatment of allergic rhinitis. Nutrients. 2022 Oct 16;14(20):4328. doi: 10.3390/nu14204328, PMID 36297012

5. Okano M, Fujieda S, Gotoh M, Kurono Y, Matsubara A, Ohta N, et al. Executive summary: Japanese guidelines for allergic rhinitis 2020. Allergol Int. 2023;72(1):41-53. doi: 10.1016/j.alit.2022.11.003, PMID 36509676

6. Swain SK, Singh V. Current treatment options for allergic rhinitis: A review. Int J Res Med Sci. 2023 Jul;11(7):2750-5. doi: 10.18203/2320- 6012.ijrms20232139

7. Rosenfield L, Keith PK, Quirt J, Small P, Ellis AK. Allergic rhinitis. Allergy Asthma Clin Immunol. 2024 Dec 27;20(Suppl 3):74. doi: 10.1186/s13223-024-00923-6, PMID 39731198

8. Tidke M, Borghare PT, Pardhekar P, Nasre Y, Gomase K, Chaudhary M. Recent advances in allergic rhinitis: A narrative review. Cureus. 2024 Sep 4;16(9):e68607. doi: 10.7759/cureus.68607, PMID 39371898

9. Liu Y, Li P, Jiang T, Li Y, Wang Y, Cheng Z. Epidermal growth factor receptor in asthma: A promising therapeutic target? Respir Med. 2023;207:107117. doi: 10.1016/j.rmed.2023.107117, PMID 36626942

10. Shimizu S, Takezawa-Yasuoka K, Ogawa T, Tojima I, Kouzaki H, Shimizu T. The epidermal growth factor receptor inhibitor AG1478 inhibits eosinophilic inflammation in upper airways. Clin Immunol. 2018 Mar;188:1-6. doi: 10.1016/j.clim.2017.11.010, PMID 29183867

11. Acciani TH, Suzuki T, Trapnell BC, Le Cras TD. Epidermal growth factor receptor signalling regulates granulocyte-macrophage colony-stimulating factor production by airway epithelial cells and established allergic airway disease. Clin Exp Allergy. 2016 Feb;46(2):317-28. doi: 10.1111/cea.12612, PMID 26263242

12. Janosova V, Calkovsky V, Pedan H, Behanova E, Hajtman A, Calkovska A. Phosphodiesterase 4 inhibitors in allergic rhinitis/ rhinosinusitis. Front Pharmacol. 2020 Jul 22;11:1135. doi: 10.3389/ fphar.2020.01135, PMID 32792957

13. Kawamatawong T. Phosphodiesterase-4 inhibitors for non-COPD respiratory diseases. Front Pharmacol. 2021 Aug 5;12:518345. doi: 10.3389/fphar.2021.518345, PMID 34434103

14. Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther. 2019;197:225-42. doi: 10.1016/j. pharmthera.2019.02.002, PMID 30759374

15. Palumbo ML, Prochnik A, Wald MR, Genaro AM. Chronic stress and glucocorticoid receptor resistance in asthma. Clin Ther. 2020;42(6):993- 1006. doi: 10.1016/j.clinthera.2020.03.002, PMID 32224031

16. Mandola A, Nozawa A, Eiwegger T. Histamine, histamine receptors, and anti-histamines in the context of allergic responses. LymphoSign J. 2019;6(2):35-51. doi: 10.14785/lymphosign-2018-0016

17. Tiwari S, Prakash K. Unrevealing the complex interplay: Molecular docking: A comprehensive review on current scenario, upcoming difficulties, forthcoming initiatives, and viewpoints. Int J Chem Res. 2024 Jan 1;8(1):1-9.

18. Varghese SS, Mathews SM. A simulation approach for NOVEL 1,3,4 thiadiazole acetamide moieties as potent antimycobacterial agents. Int J Pharm Pharm Sci. 2024 Jul 1;16(7):40-7. doi: 10.22159/ ijpps.2024v16i7.51356

19. Chandwani A, Modi K, Shah K, Shah M. In silico docking study of herbal composition and development of mouth dissolving tablets for common respiratory diseases thereof. Int J Curr Pharm Res. 2024 Jul 15;16(4):59-64. doi: 10.22159/ijcpr.2024v16i4.5010

20. Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011 Jun;7(2):146-57. doi: 10.2174/157340911795677602, PMID 21534921

21. Madriwala B, Suma BV, Jays J. Molecular docking study of hentriacontane for anticancer and antitubercular activity. Int J Chem Res. 2022 Oct 1;6(4):1-4. doi: 10.22159/ijcr.2022v6i4.208

Published

07-09-2025

How to Cite

SUMITHA A, et al. “EPIDERMAL GROWTH FACTOR RECEPTOR AND PHOSPHODIESTERASE-4 AS THERAPEUTIC TARGETS IN ALLERGIC RHINITIS: A MOLECULAR DOCKING INVESTIGATION OF FLUTICASONE FUROATE AND AZELASTINE HYDROCHLORIDE”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 9, Sept. 2025, pp. 82-86, doi:10.22159/ajpcr.2025v18i9.55197.

Issue

Section

Original Article(s)