EVALUATION OF THE ANTIDIABETIC EFFECTS OF THE HYDROETHANOLIC EXTRACT OF THE TRUNK BARK OF LANNEA ACIDA A. RICH. (ANACARDIACEAE) ON FRUCTOSE-INDUCED DIABETIC WISTAR RATS
DOI:
https://doi.org/10.22159/ajpcr.2025v18i8.55237Keywords:
Lannea acida, High fructose diet, Diabetes, Hyperglycemia, Pancreas., Area under the curveAbstract
Objective: Given the increasing consumption of sweet products and the preference for these products. Metabolic disorders such as diabetes appear early in life. This study aimed to evaluate the effect of hydroethanolic extract of Lannea acida (L. acida) trunk bark (HEELA) on the impact of daily fructose consumption on the onset of type 2 diabetes.
Methods: Four groups of male Wistar rats were fed a 10% fructose-rich drinking water for ten weeks to induce diabetes. At the beginning of the 11th week, the three groups were treated with 40. 100 and 200 mg/kg body weight (bw) HEELA for six weeks. The negative control group continued to receive fructose without treatment. The fifth group was fed fructose-free drinking water (neutral control). Blood sugar levels were measured every two weeks, and biochemical parameters such as lipids and transaminases were assessed. The area under the curve was determined. Histopathological sections of the pancreas and liver were also carried out.
Results: The results showed a significant (p<0.001) decrease in high-fructose diet-induced increases in blood glucose, relative liver and pancreas weights, area under the curve, triglyceride, ASAT, and ALAT concentrations following HEELA administration at 200 mg/kg body weight. Conversely, a significant increase (p<0.001) in the fructose-induced decrease in HDLc. The effects of fructose on liver and pancreas structure were corrected by HEELA.
Conclusion: HEELA improves the blood glucose, lipid profiles and supports liver and pancreas functions. In addition, it protects against the hepatic and pancreatic tissue damage mediated by the daily fructose consumption.
Downloads
References
1. WHO The Global Diabetes Compact. World Health Organization; 2021. Available from: https://www.who.int/publications/m/item/the-global-diabetes-compact [Last accessed on 2025 Mar 21].
2. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239-51. doi: 10.1016/S0140-6736(17)30058-2, PMID 28190580
3. Gillespie KM, Kemps E, White MJ, Bartlett SE. The impact of free sugar on human health-a narrative review. Nutrients. 2023;15(4):889. doi: 10.3390/nu15040889, PMID 36839247
4. Basu S, Yoffe P, Hills N, Lustig RH. The relationship of sugar to population-level diabetes prevalence: An econometric analysis of repeated cross-sectional data. PLoS One. 2013;8(2):e57873. doi: 10.1371/journal.pone.0057873, PMID 23460912
5. IDF. Global Diabetes Data and Insights; 2025. Available from: https:// diabetesatlas.org/fr/resources/idf-diabetes-atlas-2025 [Last accessed on 2025 May 25].
6. Séré L, Tiéno H, Yanogo D, Traoré S, Nagabila Y, Ouédraogo DD, et al. Prévalence du diabète et facteurs de risque cardiovasculaire associés dans une population rurale au Burkina Faso. Med Trop Sante Int. 2021;1(1):B1J8-7K63. doi: 10.48327/B1J8-7K63, PMID 35586634
7. Assemblée Mondiale De La Santé 74. Déclaration Politique De La Troisième Réunion De Haut Niveau De L’assemblée Générale Des Nations Unies Sur La Prévention Et La Maîtrise Des Maladies Non Transmissibles: Document Présentant Les Différentes Options Possibles Relatives Au Mécanisme Mondial De Coordination De L’oms Pour La Lutte Contre Les Maladies Non Transmissibles: Rapport Du Directeur General; 2021.
8. Toop CR, Gentili S. Fructose beverage consumption induces a metabolicsyndrome phenotype in the rat: A systematic review and meta-analysis. Nutrients. 2016;8(9):577. doi: 10.3390/nu8090577, PMID 27657120
9. Kumar SR, Mohd Ramli ES, Abdul Nasir NA, Mohd Ismail N, Mohd Fahami NA. Methanolic extract of Piper sarmentosum attenuates obesity and hyperlipidemia in fructose-induced metabolic syndrome rats. Molecules. 2021;26(13):3985. doi: 10.3390/molecules26133985, PMID 34210097
10. Li X, Geng-Ji JJ, Quan YY, Qi LM, Sun Q, Huang Q, et al. Role of potential bioactive metabolites from traditional Chinese medicine for type 2 diabetes mellitus: An overview. Front Pharmacol. 2022;13:1023713. doi: 10.3389/fphar.2022.1023713, PMID 36479195
11. Van Wyk AS, Prinsloo G. Health, safety and quality concerns of plant-based traditional medicines and herbal remedies. S Afr J Bot. 2020;133:54-62. doi: 10.1016/j.sajb.2020.06.031
12. Compaore S, Belemnaba L, Koala M, Magnini RD, Ouedraogo N, Thiombiano A, et al. Consensus level in the traditional management of diabetes and chemical potentiality of plants from north Sudanese, Burkina Faso. J Med Plants Res. 2020;14(8):415-27. doi: 10.5897/ JMPR2020.6967
13. Maroyi A. Areview of itsmedicinal uses and phytochemistry and pharmacological properties. Asian J Pharm Clin Res. 2018;11(11):69. doi: 10.22159/ajpcr.2018.v11i11.28813
14. Mansour SM, Zaki HF, El-Denshary EE. Beneficial effects of co-enzyme Q10 and rosiglitazone in fructose-induced metabolic syndrome in rats. Bull Fac Pharm Cairo Univ. 2013;51(1):13-21. doi: 10.1016/j.bfopcu.2012.10.001
15. Malakul W, Pengnet S, Kumchoom C, Tunsophon S. Naringin ameliorates endothelial dysfunction in fructose-fed rats. Exp Ther Med. 2018;15(3):3140-6. doi: 10.3892/etm.2018.5759, PMID 29456717
16. Gisèle EL, Jacques Y, Cécile OE, Vivien MB, Guy N, Emmanuel MM, et al. Étude de la toxicité aigue et subaigüe de l’extrait au vin des graines de Carica papaya Linn. J Appl Biosci. 2017;120:12077-85.
17. Hernández-Salinas R, Decap V, Leguina A, Cáceres P, Perez D, Urquiaga I, et al. Antioxidant and anti hyperglycemic role of wine grape powder in rats fed with a high fructose diet. Biol Res. 2015;48:53. doi: 10.1186/s40659-015-0045-4, PMID 26420015
18. Helsley RN, Moreau F, Gupta MK, Radulescu A, DeBosch B, Softic S. Tissue-specific fructose metabolism in obesity and diabetes. Curr Diab Rep. 2020;20(11):64. doi: 10.1007/s11892-020-01342-8, PMID 33057854
19. Tappy L. Fructose, sucres et maladies métaboliques. Cah Nutr Diététique. 2020;55(5):233-9. doi: 10.1016/j.cnd.2020.06.003
20. Alam YH, Kim R, Jang C. Metabolism and health impacts of dietary sugars. J Lipid Athérosclér. 2022;11(1):20-38. doi: 10.12997/ jla.2022.11.1.20, PMID 35118020
21. Mamikutty N, Thent ZC, Sapri SR, Sahruddin NN, Mohd Yusof MR, Haji Suhaimi F. The establishment of metabolic syndrome model by induction of fructose drinking water in male wistar rats. Bio Med Res Int. 2014;2014:263897. doi: 10.1155/2014/263897, PMID 25045660
22. Derouiche S, Degachi O, Gharbi K. The effect of purslane and Aquilaria malaccensis on insulin-resistance and lipid peroxidation in high-fructose diet rats. Rom J Diabetes Nutr Metab Dis. 2020;27:357-65.
23. Derouiche S, Azzi M, Hamida A. Effect of extracts aqueous of Phragmites australis on carbohydrate metabolism, some enzyme activities and pancreatic islet tissue in alloxan-induced diabetic rats. Int J Pharm Pharm Sci. 2017;9(6):54-8. doi: 10.22159/ ijpps.2017v9i6.17321
24. Miranda CA, Schönholzer TE, Klöppel E, Sinzato YK, Volpato GT, Damasceno DC, et al. Repercussions of low fructose-drinking water in male rats. An Acad Bras Cienc. 2019;91(1):e20170705. doi: 10.1590/0001-3765201920170705, PMID 30785495
25. Wang Y, Qi W, Song G, Pang S, Peng Z, Li Y, et al. High-fructose diet increases inflammatory cytokines and alters gut microbiota composition in rats. Mediators Inflamm. 2020;2020:6672636. doi: 10.1155/2020/6672636, PMID 33312070
26. Maiztegui B, Borelli MI, Raschia MA, Del Zotto HD, Gagliardino JJ. Islet adaptive changes to fructose-induced insulin resistance: Beta-cell mass, glucokinase, glucose metabolism, and insulin secretion. J Endocrinol. 2009;200(2):139-49. doi: 10.1677/JOE-08-0386, PMID 19039094
27. Lindo RA, Salmon C, Mcgrowder D. The hypoglycaemic effect of oleanonic acid isolated from Pilea elizabethae in a rat model. Int J Curr Pharm Res. 2017;9(6):63-9. doi: 10.22159/ijcpr.2017v9i6.23431
28. Bhowmik R, Roy S, Sengupta S, Sharma S. Biocomputational and pharmacological analysis of phytochemicals from Zingiber officinale (ginger), Allium sativum (garlic), and Murraya koenigii (curry leaf) in contrast to type 2-diabetes. Int J Appl Pharm. 2021;13:280-6. doi: 10.22159/ijap.2021v13i5.42294
29. Rajendiran D, Packirisamy S, Gunasekaran K. A review on role of antioxidants in diabetes. Asian J Pharm Clin Res. 2018;11(2):48-53. doi: 10.22159/ajpcr.2018.v11i2.23241
30. Chetehouna S, Derouiche S, Reggami Y, Boulaares I. Sonchus maritimus extract-loaded niosomes bioconjugated by linoleic acid in hepatic encephalopathy induced by high-fructose diet in Albino Wistar rats. Arch Razi Inst. 2024;79(1):189-200. doi: 10.32592/ ARI.2024.79.1.189, PMID 39192951
31. Rahman MD, Akter R, Mazumdar S, Islam F, Mouri NJ, Nandi NC, et al. Antidiabetic and antidiarrhoeal potentials of ethanolic extracts of aerial parts of Cynodon dactylon pers. Asian Pac J Trop Biomed. 2015;5(8):658-62. doi: 10.1016/j.apjtb.2015.04.011
32. Srivastava S, Rahuja N, Srivastava S, Tamrakar A, Mishra S, Srivastava S, et al. Antihyperglycemic and antidyslipidemic activity in ethyl acetate fraction of the fruits of Xylocarpus granatum and Xylocarpus moluccensis. Int J Pharm Pharm Sci. 2015;7:532-6.
33. Ighodaro OM, Omole JO. Effects of Nigerian Piliostigma thonningii species leaf extract on lipid profile in Wistar rats. ISRN Pharmacol. 2012;2012:387942. doi: 10.5402/2012/387942, PMID 22991674
34. Zulham WY, Wardhana YW, Subarnas A, Susilawati Y, Chaerunisaa AY. Microencapsulation of Schleichera oleosa L. Leaf extract in maintaining their biological activity: Antioxidant and hepatoprotective. Int J Appl Pharm. 2023;15:326-33. doi: 10.22159/ijap.2023v15i6.48960
35. Hwang KA, Hwang YJ, Kim GR, Choe JS. Extracts from Aralia elata (Miq) Seem. Alleviate hepatosteatosis via improving hepatic insulin sensitivity. BMC Complement Altern Med. 2015;15:347. doi: 10.1186/ s12906-015-0871-5, PMID 26438035
36. Wu H, Ballantyne CM. Metabolic inflammation and insulin resistance in obesity. Circ Res. 2020;126(11):1549-64. doi: 10.1161/ CIRCRESAHA.119.315896, PMID 32437299
37. Owusu G, Ofori-Amoah J. Anti-inflammatory and analgesic effects of an aqueous extract of Lannea acida stem bark.Br J Pharm Res.
2017;16(6):1-8. doi: 10.9734/BJPR/2017/33266
Published
How to Cite
Issue
Section
Copyright (c) 2025 Abdelaziz KOUSSOUBE, Filkpièrrè Léonard DA, Maya DOUKOURE, Basile TINDANO, Balé BAYALA

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.