DEVELOPMENT OF SUSTAINED-RELEASE VILDAGLIPTIN NANOPARTICLES FOR ENHANCED TYPE 2 DIABETES MELLITUS THERAPY

Authors

  • SWAPNIL BHANUDAS GADEKAR Department of Pharmaceutics, PDEA’s Shankarrao Ursal College of Pharmaceutical Science and Research Center (Affiliated to Savitribai Phule Pune University), Pune, Maharashtra, India. https://orcid.org/0009-0007-8445-3398
  • ASHOK VITHAL BHOSALE Department of Pharmaceutics, PDEA’s Shankarrao Ursal College of Pharmaceutical Science and Research Center (Affiliated to Savitribai Phule Pune University), Pune, Maharashtra, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i11.55269

Keywords:

Vildagliptin, Nanoparticles, Diabetics, Ionic gelation technique, Sustained release

Abstract

Objectives: This study aimed to develop sustained-release vildagliptin (VLG) nanoparticles using ionotropic gelation to enhance therapy for type 2 diabetes mellitus (T2DM). The goal was to optimize formulation parameters to improve drug delivery, prolong therapeutic action, and reduce dosing frequency for better glycemic control.

Methods: The nanoparticles were optimized using a Box-Behnken design, focusing on key variables chitosan and dextran sulfate concentrations, along with Tween 80 content. The impact of these factors was assessed on encapsulation efficiency (EE), drug release (DR), and particle characteristics. Further characterization included Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) analyses to confirm drug-polymer compatibility and crystallinity changes. Comparative release studies were conducted between free VLG and nanoparticle formulation, while statistical evaluation was performed using a central composite design.

Results: The optimized nanoparticles exhibited a spherical morphology with an average size of 268.18±7.5 nm and a narrow size distribution (polydispersity index=0.427±0.21). FTIR confirmed drug-polymer compatibility, while XRD revealed a shift in VLG from a crystalline to an amorphous state upon encapsulation. The EE ranged from 58.25±1.2% to 84.01±1.8%, demonstrating effective drug loading. DR studies showed that free VLG was completely released within 1 h, whereas the nanoparticle formulation extended release over 24 h, confirming sustained delivery.

Conclusion: The findings suggest that the developed VLG nanoparticles can prolong therapeutic action, potentially reducing dosing frequency and improving glycemic control in T2DM. This study highlights the potential of nanotechnology-based delivery systems to enhance the pharmacokinetic profile of antidiabetic drugs, offering a promising strategy for long-term diabetes management.

Downloads

Download data is not yet available.

References

1. Waghulde MR, Naik JB. Poly-e-caprolactone-loaded miglitol microspheres for the treatment of type-2 diabetes mellitus using the response surface methodology. J Taibah Univ Med Sci. 2016;11(4):364- 73. doi: 10.1016/j.jtumed.2016.03.006

2. Waghulde M, Rajput R, Mujumdar A, Naik J. Production and evaluation of vildagliptin-loaded poly(d,l-lactide) and poly(d,l-lactide-glycolide) micro-/nanoparticles: Response surface methodology approach. Dry Technol. 2019;37:1265-76. doi: 10.1080/07373937.2018.1495231

3. Naik JB, Waghulde MR. Development of vildagliptin loaded Eudragit® microspheres by screening design: In vitro evaluation. J Pharm Investig. 2018;48(6):627-37. doi: 10.1007/s40005-017-0355-3

4. El-masry SM, ElBedaiwy HM, Abd-Alhaseeb MM, Abdel- Maksoud MS, Habib DA. Green polymer altered in-situ gel oral liquid sustainable release preparation of vildagliptin suitable for dysphagic diabetic patients: Assessment in-vitro & in-vivo. Pharm Dev Technol. 2023;28(7):585-94. doi: 10.1080/10837450.2023.2223293, PMID 37310754

5. Waghulde M, Naik J. Comparative study of encapsulated vildagliptin microparticles produced by spray drying and solvent evaporation technique. Dry Technol. 2017;35(13):1644-54. doi: 10.1080/07373937.2016.1273230

6. Pardeshi SR, More MP, Pagar R, Kole EB, Patil TS, Giram PS, et al. Importance of nanomedicine in human health. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. Netherlands: Elsivier; 2023. p. 3-33. doi: 10.1016/B978-0-323-95171- 5.00014-5

7. Kole E, Jadhav K, Shirsath N, Dudhe P, Verma RK, Chatterjee A, et al. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol. 2023;81:104261. doi: 10.1016/j.jddst.2023.104261

8. Pardeshi SR, Kole EB, Kapare HS, Chandankar SM, Shinde PJ, Boisa GS, et al. Progress on thin film freezing technology for dry powder inhalation formulations. Pharmaceutics. 2022;14(12):2632. doi: 10.3390/pharmaceutics14122632, PMID 36559129

9. Kole E, Jadhav K, Singh R, Mandpe S, Abhang A, Verma RK, et al. Recent developments in tyrosine kinase inhibitor-based nanotherapeutics for EGFR-resistant non-small cell lung cancer. Curr Drug Deliv. 2024;22:249-60. doi: 10.2174/0115672018278617231207 051907

10. Sridhar GR, Pandit K, Warrier S, Birla A. Sustained-release vildagliptin 100 mg in type 2 diabetes mellitus: A review. Cureus. 2023;15(5):e39204. doi: 10.7759/cureus.39204, PMID 37378205

11. Qiu A, Wang Y, Zhang G, Wang H. Natural polysaccharide-based nanodrug delivery systems for treatment of diabetes. Polymers (Basel). 2022;14(15):3217. doi: 10.3390/polym14153217, PMID 35956731

12. Kamat V, Marathe I, Ghormade V, Bodas D, Paknikar K. Synthesis of monodisperse chitosan nanoparticles and in situ drug loading using active microreactor. ACS Appl Mater Interfaces. 2015;7(41):22839-47. doi: 10.1021/acsami.5b05100, PMID 26448128

13. Patil A, Pardeshi S, Kapase M, Patil P, More M, Dhole S, et al. Continuous preparation of sustained release vildagliptin nanoparticles using tubular microreactor approach. Technol. 2024;42(4):661-73. doi: 10.1080/07373937.2023.2298778

14. Patil J, Rajput R, Patil P, Mujumdar A, Naik J. Generation of sustained release chitosan nanoparticles for delivery of ketorolac tromethamine: A tubular microreactor approach. Int J Polym Mater Polym Biomater. 2020;69(8):516-24. doi: 10.1080/00914037.2019.1581201

15. Kole E, Pardeshi S, Mujumdar AS, Naik J. Prospects for the development of the industrial process for drying nanoformulations. In: Particulate Drying. Boca Raton: CRC Press; 2023. p. 131-50. doi: 10.1201/9781003207108-8

16. Deshmukh RK, Naik JB. Diclofenac sodium-loaded Eudragit® microspheres: Optimization using statistical experimental design. J Pharm Innov. 2013;8(4):276-87. doi: 10.1007/s12247-013-9167-9

17. Verma U, Naik JB, Deshmukh R, Mishra S. Development of biodegradable glimepiride loaded chitosan Nano particles: A factorial design approach. Curr Environ Eng. 2018;5(1):68-77. doi: 10.2174/221 2717805666180112161020

18. Pardeshi SR, More MP, Pardeshi CV, Chaudhari PJ, Gholap AD, Patil A, et al. Novel crosslinked nanoparticles of chitosan oligosaccharide and dextran sulfate for ocular administration of dorzolamide against glaucoma. J Drug Deliv Sci Technol. 2023;86:104719. doi: 10.1016/j. jddst.2023.104719

19. Khairnar G, Mokale V, Mujumdar A, Naik J. Development of nanoparticulate sustained release oral drug delivery system for the antihyperglycemic with antihypertensive drug. Mater Tech. 2019;34(14):880-8. doi: 10.1080/10667857.2019.1639019

20. Mandpe S, Kole E, Parate V, Chatterjee A, Mujumdar A, Naik J. Design, development, and evaluation of spray dried flurbiprofen loaded sustained release polymeric nanoparticles using QBD approach to manage inflammation. Dry Technol. 2023;41:2418-30. doi: 10.1080/07373937.2023.2251572

21. Khairnar G, Mokale V, Khairnar R, Mujumdar A, Naik J. Production of antihyerglycemic and antihypertensive drug loaded sustained release nanoparticles using spray drying technique: Optimization by placket burman design. Dry Technol. 2020;40:626-37. doi: 10.1080/07373937.2020.1825292

22. Chougule M, Sirvi A, Saini V, Kashyap M, Sangamwar AT. Enhanced biopharmaceutical performance of brick dust molecule nilotinib via stabilized amorphous nanosuspension using a facile acid-base neutralization approach. Drug Deliv Transl Res. 2023;13(10):2503-19. doi: 10.1007/s13346-023-01334-7, PMID 37024611

23. Jadhav K, Jhilta A, Singh R, Ray E, Sharma N, Shukla R, et al. Clofazimine nanoclusters show high efficacy in experimental TB with amelioration in paradoxical lung inflammation. Biomater Adv. 2023;154:213594. doi: 10.1016/j.bioadv.2023.213594, PMID 37657277

24. Naik J, Rajput R, Singh MK. Development and evaluation ofibuprofen loaded hydrophilic biocompatible polymeric nanoparticles for the taste masking and solubility enhancement. BioNanoScience. 2021;11(1):21-31. doi: 10.1007/s12668-020-00798-y

25. Kole E, Sonar Y, Sarode RJ, Chaudhari A, Naik J. Development and characterisation of lyophilised ethambutol-loaded polymeric nanoparticles. J Appl Pharm Res. 2025;13(2):172-80. doi: 10.69857/ joapr.v13i2.1093

26. Booravilli J, Sirisolla JD. Investigating the efficacy of curcumin nanoemulgel in combating bacterial activity using agar diffusion method and broth dilution method. Int J Appl Pharm. 2025;17(4):279- 89. doi: 10.22159/ijap.2025v17i4.53560

27. Sahu NK, Lariya NK. In vivo evaluation of Ph-responsive Eudragit® S-100 coated chitosan nanoparticles for targeted curcumin delivery in ulcerative colitis. Int J Pharm Pharm Sci. 2025 May;17(7):69-74. doi: 10.22159/ijpps.2025v17i8.54905

28. Kamble A, Tamboli A, Zade A, Patil K. Simultaneous estimation of loratadine and ambroxol hydrochloride in bulk and pharmaceutical formulations by simple UV spectrophotometry. Int J Curr Pharm Res. 2024 Sep;16(5):45-9. doi: 10.22159/ijcpr.2024v16i5.5057

Published

07-11-2025

How to Cite

SWAPNIL BHANUDAS GADEKAR, and ASHOK VITHAL BHOSALE. “DEVELOPMENT OF SUSTAINED-RELEASE VILDAGLIPTIN NANOPARTICLES FOR ENHANCED TYPE 2 DIABETES MELLITUS THERAPY”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 11, Nov. 2025, pp. 68-74, doi:10.22159/ajpcr.2025v18i11.55269.

Issue

Section

Original Article(s)