ANTIMICROBIAL RESISTANCE PATTERNS AND PHENOTYPIC CARBAPENEMASE DETECTION IN CLINICAL PSEUDOMONAS AERUGINOSA ISOLATES

Authors

  • AHUTI PANDYA Department of Microbiology, U.N. Mehta Institute of Cardiology and Research Centre, Affiliated to GMERS Medical College, Gandhinagar, Gujarat, India. https://orcid.org/0009-0004-1741-1874
  • RIA KOTECHA Department of Microbiology, GMERS Medical College, Porbandar, Gujarat, India. https://orcid.org/0009-0009-4662-4322
  • UJALA SAROLA Department of Microbiology, GMERS Medical College, Porbandar, Gujarat, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i9.55315

Keywords:

Pseudomonas aeruginosa, Antimicrobial resistance, Multidrug resistance, Extensively drug-resistant, Carbapenemase detection, Modified carbapenem inactivation method.

Abstract

Objectives: Pseudomonas aeruginosa is a significant pathogen responsible for hospital-acquired infections. Its capacity for multidrug resistance (MDR) limits therapeutic options and contributes to elevated patient morbidity. This study investigates the frequency of MDR and extensively drug-resistant (XDR) P. aeruginosa isolates and evaluates the effectiveness of phenotypic methods for detecting carbapenemase activity.

Methods: A total of 100 P. aeruginosa isolates were collected from various clinical samples over 6 months in a cross-sectional study. Antimicrobial susceptibility testing was conducted using the Kirby–Bauer disk diffusion technique, adhering to the Clinical and Laboratory Standards Institute 2024 standards. Carbapenem-resistant isolates were further analyzed for carbapenemase production using three methods: modified Hodge test (MHT), combined double-disk synergy test (CDDT), and modified carbapenem inactivation method (mCIM)/EDTA-modified carbapenem inactivation method.

Results: Out of 100 isolates, 19% were classified as MDR and 24% as XDR. The highest susceptibility was observed with imipenem (79%), followed by meropenem (75%) and piperacillin–tazobactam (67%). Among the 26 carbapenem-resistant isolates, MHT detected carbapenemase production in 46.2%, CDDT in 26.9%, and mCIM in 38.5%. Metallo-β-lactamase production was observed in 34.6% of isolates, whereas 3.8% demonstrated serine- β-lactamase activity.

Conclusion: The presence of MDR and XDR P. aeruginosa and substantial carbapenem resistance underscores the importance of consistent antimicrobial surveillance and the implementation of accurate detection techniques such as mCIM. Prompt identification of resistance mechanisms is critical for appropriate therapy and the control of nosocomial infections.

Downloads

Download data is not yet available.

References

1. Arora D, Jindal N, Kumar R, Romit M. Emerging antibiotic resistance in Pseudomonas: A challenge. Int J Pharm Pharm Sci. 2011;3(2):1488-91.

2. Chika EO, Agbakoba NR, Ogude DN, Ejikeugwu C. Multi-drug resistant Pseudomonas aeruginosa isolated from hospitals in Onitsha, South-Eastern Nigeria. Int Arch Biomed Clin Res. 2017;3(3):22-6. doi: 10.21276/gds64827

3. Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Med Chem. 2014;6:25-64. doi: 10.4137/PMC.S14459, PMID 25232278

4. Chastre J, Trouillet JL. Problem pathogens (Pseudomonas aeruginosa and Acinetobacter). Semin Respir Infect. 2000;15(4):287-98. doi: 10.1053/srin.2000.20944, PMID 11220411

5. Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic-resistant pseudomonas aeruginosa in intensive care unit: A critical review. Genes Dis. 2019;6(2):109-19. doi: 10.1016/j.gendis.2019.04.001, PMID 31194018

6. Al-Dahmoshi H, Al-Obaidi RD, Al-Khafaji N. Pseudomonas aeruginosa: Diseases, biofilm and antibiotic resistance. In: Das T, editor. Pseudomonas aeruginosa. Biofilm Formation, Infections and Treatments. London: IntechOpen; 2020.

7. Miller WR, Arias CA. ESKAPE pathogens: Antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol. 2024;22(10):598-616. doi: 10.1038/s41579-024-01054-w, PMID 38831030

8. World Health Organization-South-East Asia Regional Office. Prevention and Containment of Antimicrobial Resistance: Report of a Regional Meeting, Chiang Mai, Thailand. New Delhi: World Health Organization SEARO; June 8-11 2010.

9. Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res. 2010;10(4):441-51. doi: 10.1586/erp.10.49, PMID 20715920

10. Morales E, Cots F, Sala M, Comas M, Belvis F, Riu M, et al. Hospital costs of nosocomial multi-drug-resistant Pseudomonas aeruginosa acquisition. BMC Health Serv Res. 2012;12:122. doi: 10.1186/1472- 6963-12-122, PMID 22621745

11. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. doi: 10.1111/j.1469-0691.2011.03570.x, PMID 21793988

12. Sau B, Sarkar A, Mukherjee S, Ghosh S. Antimicrobial resistance patterns of Pseudomonas species in all clinical samples from a medical college in Eastern India: A retrospective observational study. Eur J Cardiovasc Med. 2024;14(4):498-502.

13. Das M, Padhi S, Narsimham MV, Pattnaik S. Antimicrobial resistance pattern of Pseudomonas aeruginosa isolated from various clinical samples in a tertiary care hospital, South Odisha, India. Saudi J Health Sci. 2014;3:15-9.

14. Zhao Y, Xu H, Wang H, Wang P, Chen S. Multidrug resistance in Pseudomonas aeruginosa: Genetic control mechanisms and therapeutic advances. Mol Biomed. 2024;5(1):62. doi: 10.1186/s43556-024- 00221-y, PMID 39592545

15. Kaur A, Singh S, Gill AK, Kaur N. Prevalence and antimicrobial susceptibity pattern of Pseudomonas aeruginosa isolated from various clinical samples in a tertiary care hospital, Bathinda. Indian J Basic Appl Med Res. 2016;5:777-84.

16. Yadav S, Sujatha R, Deepak S. Emergence of multidrug resistant Pseudomonas aeruginosa in a tertiary care center. Int J Health Sci Res. 2018;8:52-5.

17. Walaa MS, Samah G, Hatem ME, Nikhat M. In vitro antibiotic resistance patterns of Pseudomonas spp. isolated from clinical samples of a hospital in Madinah, Saudi Arabia. Afr J Microbiol Res. 2018;12(1):19-26. doi: 10.5897/AJMR2017.8743

18. Harfouch R, Rim M. Medicinal plants and Pseudomonas aeruginosa: Is that the solution for antibiotic resistance? Int J Appl Pharm. 2023;10(7):353-55.

19. Mohanasoundaram KM. The antibiotic resistance pattern in the clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital; a 3-year study. J Clin Diagn Res. 2011;5:491-4.

20. Ravella Venkatasubramanyam N, Easwaran S, Prabhakaran N. Retrospective analysis of antimicrobial resistance trends in pseudomonas aeruginosa and acinetobacter baumannii. Cureus. 2024 Sep 11;16(9):e69166. doi: 10.7759/cureus.69166. PMID: 39398730; PMCID: PMC11469660.

21. Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res Notes. 2020;13(1):380. doi: 10.1186/s13104-020- 05224-w, PMID 32778154

22. Sabour S, Harrington KR, Martinson E, Bhatnagar AS, Huang JY, Duffy D, et al. Characterization of carbapenem resistant Enterobacterales and Pseudomonas aeruginosa carrying multiple carbapenemase genes - Antimicrobial Resistance Laboratory Network, 2018-2022. J Clin Microbiol. 2024;62(12):e0122024. doi: 10.1128/jcm.01220-24, PMID 39565121

23. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI Supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2021.

24. Pasteran F, Méndez T, Guerriero L, Rapoport M, Corso A. Sensitive screening tests for suspected class A carbapenemase production in Enterobacteriaceae. J Clin Microbiol. 2009;47(6):1631-9. doi: 10.1128/ JCM.01531-08

25. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: The quiet before the storm? Clin Microbiol Rev. 2005;18(2):306-25. doi: 10.1128/CMR.18.2.306-325.2005, PMID 15831827

26. Bush K. The importance of β-lactamases to the development of new β-lactams. Antimicrob Drug Resist. 2017;21(6):165-75.

Published

07-09-2025

How to Cite

AHUTI PANDYA, et al. “ANTIMICROBIAL RESISTANCE PATTERNS AND PHENOTYPIC CARBAPENEMASE DETECTION IN CLINICAL PSEUDOMONAS AERUGINOSA ISOLATES”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 9, Sept. 2025, pp. 150-3, doi:10.22159/ajpcr.2025v18i9.55315.

Issue

Section

Original Article(s)