COMPARATIVE PHYTOCHEMICAL ANALYSIS AND ANTIDIABETIC ACTIVITIES OF TENDER AND RIPENED COCONUT FRUIT PARTS

Authors

  • SUPRIYA SAHA Department of Pharmacy, Guru Nanak Institute of Pharmaceutical Science and Technology, Khardaha, West Bengal, India. https://orcid.org/0009-0005-9258-9354
  • SANCHARI BHATTACHARYA Department of Pharmacy, Guru Nanak Institute of Pharmaceutical Science and Technology, Khardaha, West Bengal, India. https://orcid.org/0000-0002-8958-0077
  • PRIYANKA RAY Department of Pharmacy, Guru Nanak Institute of Pharmaceutical Science and Technology, Khardaha, West Bengal, India.
  • PRAPTI CHAKRABORTY Department of Pharmacy, Guru Nanak Institute of Pharmaceutical Science and Technology, Khardaha, West Bengal, India. https://orcid.org/0000-0001-5482-0790

DOI:

https://doi.org/10.22159/ajpcr.2025v18i9.55400

Keywords:

Diabetes Mellitus, Antidiabetic Activity, Cocos nucifera, α-amylase inhibition, α-glucosidase inhibition.

Abstract

Objective: Diabetes mellitus is a chronic metabolic disorder, which leads to a decrease in quality of life and even death. There are various treatments for diabetes available in the market, but they have several side effects. In the search for natural antidiabetic agents or medicinal plants, coconut (Cocos nucifera L.) is a suitable choice due to its lesser adverse effects. This study investigates and compares the phytochemical profile and antidiabetic activities of tender and ripened coconut parts (e.g., husk, water, and milk).

Methods: Different quantitative and qualitative tests were conducted to identify various bioactive compounds like alkaloids, flavonoids, phenolics, tannins, etc., and antidiabetic potential was evaluated through α-amylase and α-glucosidase enzyme inhibition assays using in vitro models to evaluate glucose lowering potential.

Results: Both quantitative and qualitative assays showed differences in bioactive substances in tender and ripened coconut fruit parts. The in-vitro antidiabetic activity also showed notable differences in glucose-lowering effects.

Conclusion: Antidiabetic activity showed that both ripened and tender coconut husks had significant inhibition, which is comparable to the standard drug acarbose, showing strong antidiabetic potential. The ripened coconut husk showed IC50 value of 821.45 µg/mL for α-amylase and 1172.82 µg/mL for α-glucosidase while tender coconut husk showed 1079.11 µg/mL α-amylase for and 1196.76 µg/mL for α-glucosidase. Both the ripened and tender coconut milk showed low to minimal antidiabetic activity, while coconut water demonstrated moderate activity.

Downloads

Download data is not yet available.

References

1. Indrawati T, Hakim ZR, Hutabarat R, Djamil R, Sianturi S, Dwita MI, et al. Optimization of sugarcane (Saccharum officinarum L.) juice microfiltration for storage stability and antihyperglycemic activity. Int J App Pharm. 2024;16(3):31-9. doi: 10.22159/ijap.2024.v16s3.06

2. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020 Aug;21(17):6275. doi: 10.3390/ijms21176275, PMID 32872570

3. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022 Jan;183:109119. doi: 10.1016/j.diabres.2021.109119, PMID 34879977

4. Nabrdalik K, Skonieczna-Żydecka K, Irlik K, Hendel M, Kwiendacz H, Łoniewski I, et al. Gastrointestinal adverse events of metformin treatment in patients with type 2 diabetes mellitus: A systematic review, meta-analysis and meta-regression of randomized controlled trials. Front Endocrinol (Lausanne). 2022 Sep;13:975912. doi: 10.3389/ fendo.2022.975912, PMID 361871225. DeFronzo RA, Abdul-Ghani M. Type 2 diabetes can be prevented with early pharmacological intervention. Diabetes Care. 2011 May;34 Suppl 2:S202-9. doi: 10.2337/dc11-s221, PMID 21525456

6. Stottlemyer BA, McDermott MC, Minogue MR, Gray MP, Boyce RD, Kane-Gill SL. Assessing adverse drug reaction reports for antidiabetic medications approved by the food and drug administration between 2012 and 2017: A pharmacovigilance study. Ther Adv Drug Saf. 2023 Jun;14:20420986231181334. doi: 10.1177/20420986231181334, PMID 37332887

7. Kalra S, Sahay R, Gupta Y. Sodium glucose transporter 2 (SGLT2) inhibition and ketogenesis. Indian J Endocrinol Metab. 2015 Jul- Aug;19(4):524-8. doi: 10.4103/2230-8210.157859, PMID 26180770

8. Devi M, Gayathri P, Begum S. Pharmacological activity of Cocos nucifera L. during different stages of maturation. Int J Pharm Res Appl. 2022;7(4):1851-8. doi: 10.35629/7781-070418511858

9. DebMandal M, Mandal S. Coconut (Cocos nucifera L.: Arecaceae): In health promotion and disease prevention. Asian Pac J Trop Med. 2011 Mar;4(3):241-7. doi: 10.1016/S1995-7645(11)60078-3, PMID 21771462

10. Lima EB, Sousa CN, Meneses LN, Ximenes NC, Santos Júnior MA, Vasconcelos GS, et al. Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review. Braz J Med Biol Res. 2015 Nov;48(11):953-64. doi: 10.1590/1414-431X20154773, PMID 26292222

11. Wang L, Qiu XM, Gui YY, Xu YP, Gober HJ, Li DJ. Bu-Shen-Ning-Xin Decoction ameliorated the osteoporotic phenotype of ovariectomized mice without affecting the serum estrogen concentration or uterus. Drug Des Dev Ther. 2015 Aug;9:5019-31. doi: 10.2147/DDDT.S89505, PMID 26357466

12. Imtilemla I, Bareh V, Barbhuiya SB, Sailo L. Preliminary phytochemical screening and in vitro antioxidant activity of the methanolic extract of Lindernia ruellioides. Asian J Pharm Clin Res. 2020;13(9):141-6. doi: 10.22159/ajpcr.2020.v13i9.38498

13. Pant DR, Pant ND, Saru DB, Yadav UN, Khanal DP. Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh. J Intercult Ethnopharmacol. 2017 Apr;6(2):170-6. doi: 10.5455/jice.20170403094055, PMID 28512598

14. Pandey LK, Sharma KR. Analysis of phenolic and flavonoid content, α-amylase inhibitory and free radical scavenging activities of some medicinal plants. ScientificWorldJournal. 2022 Oct;2022:4000707. doi: 10.1155/2022/4000707, PMID 36225946.

15. Prajapati D, Makvana A, Patel M, Chaudhary R, Patel R. Spectrophotometric method for the determination of total alkaloids in selected plant parts. J Pharmacogn Phytochem. 2024;13(5):491-4. doi: 10.22271/phyto.2024.v13.i5g.15117

16. Muritala HF, Akolade JO, Akande SA, Abdulazeez AT, Aladodo RA, Bello AB. Antioxidant and alpha-amylase inhibitory potentials of Cocos nucifera husk. Food Sci Nutr. 2018 Jul;6(6):1676-83. doi: 10.1002/ fsn3.741, PMID 30258612

17. Emojevwe V, Jeroh E. Anti-diabetic effects of the Cocos nucifera (coconut) husk extract. J Med Appl Biosci. 2012;4:16-25. doi: 10.13140/ RG.2.2.14402.27844

18. Nadhiya K, Mahalakshmi P, Kalaivani P. In vitro assessment of ethanolic extract of Cucumis maderaspatanus leaves as an α-amylase and α-glucosidase inhibitor. Asian J Pharm Clin Res. 2024;17(11):109-15. doi: 10.22159/ajpcr.2024v17i11.52075

19. Elshemy MA. Antidiabetic and anti-hyperlipidemic effects of virgin coconut oil in rats. Egypt J Vet Sci. 2018;49(2):111-7. doi: 10.21608/ ejvs.2018.3548.1036

20. Pinto IF, Silva RP, Chaves Filho B, Dantas LS, Bispo VS, Matos IA, et al. Study of Antiglycation, hypoglycemic, and nephroprotective activities of the green dwarf variety coconut water (Cocos nucifera L.) in alloxan-induced diabetic rats. J Med Food. 2015 Jul;18(7):802-9. doi: 10.1089/jmf.2014.0046, PMID 25651375

21. Karunasiri AN, Gunawardane M, Senanayake CM, Jayathilaka N, Seneviratne KN. Antioxidant and nutritional properties of domestic and commercial coconut milk preparations. Int J Food Sci. 2020 Aug;2020:3489605. doi: 10.1155/2020/3489605, PMID 32832538

Published

07-09-2025

How to Cite

SUPRIYA SAHA, et al. “COMPARATIVE PHYTOCHEMICAL ANALYSIS AND ANTIDIABETIC ACTIVITIES OF TENDER AND RIPENED COCONUT FRUIT PARTS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 9, Sept. 2025, pp. 154-8, doi:10.22159/ajpcr.2025v18i9.55400.

Issue

Section

Original Article(s)