MICROPLASTIC-DRUG INTERACTIONS: UNVEILING COMBINED EFFECTS ON BIOLOGICAL SYSTEMS

Authors

  • KRANTHI YALLA Department of Pharmaceutical Analysis, Shri Vishnu College of Pharmacy, West Godavari, Andhra Pradesh, India https://orcid.org/0000-0003-4193-8129
  • SRINIVASA RAO ATLA Department of Pharmaceutical Analysis, Shri Vishnu College of Pharmacy, West Godavari, Andhra Pradesh, India
  • YOHAN GANGOLU Department of Pharmaceutical Analysis, Shri Vishnu College of Pharmacy, West Godavari, Andhra Pradesh, India. https://orcid.org/0009-0008-2333-8940
  • KRISHNA PRIYANKA KOYA Department of Pharmaceutical Analysis, Shri Vishnu College of Pharmacy, West Godavari, Andhra Pradesh, India. https://orcid.org/0009-0005-6360-1529
  • SRUTHI GANTA Department of Pharmaceutical Analysis, Shri Vishnu College of Pharmacy, West Godavari, Andhra Pradesh, India. https://orcid.org/0009-0007-2207-5635
  • SUDHEER YARRA Department of Pharmaceutical Analysis, Shri Vishnu College of Pharmacy, West Godavari, Andhra Pradesh, India. https://orcid.org/0009-0009-7631-6072
  • KIRAN MANDA Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, West Godavari, Andhra Pradesh, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i9.55404

Keywords:

Polypropylene (PP),, Polyethylene (PE),, Polyhydroxy alkanoates (PHA),, Polystyrene (PS),, Polyvinylchloride (PVC) and Polyamide (PA) etc...

Abstract

In our daily life plastic plays a major role in packaging material, clothing, construction, electrical, transportation, and medical devices because of their affordability, light weight, and availability. The most commonly used plastics are Polypropylene, Polyethylene, Poly hydroxyl alkanoates, Polystyrene, Poly vinyl chloride and Polyamide. Some experts estimate that the total amount of plastics produced worldwide increased at an annual growth rate of 5% was observed from 1950 to 2018 amounted to 359 million tons; about 10% of that amount is ending up in the ocean through various channels. In 2018, worldwide plastic output hit 360 million tons, with just 6% - 20% recycled. Regretfully, plastic usage is increasing. Although they are susceptible to ultraviolet light and mechanical worn they did not worn away.  These Microplastics are abundantly found in the environment which paved a way to toxic environment. Because of their tiny size, large specific area, hydrophobicity, and stabilized chemical properties, MPs can endure in the environment for hundreds or even thousands of years. Microplastics are classified into two types: degradable and non-degradable. In this review, we demonstrate the interaction between Micro, Nano plastics with drugs and their effect on environment. Many drugs like Boron, Tetracyclines, Methamphetamine, Ciprofloxacin, Amphetamine, Chlortetracycline, Procainamide and Doxycyclines with Micro and Nano plastics shows negative impacts on living organisms directly or indirectly. This review will brief some of the reported impacts on living organisms.

Downloads

Download data is not yet available.

References

1. Zhang K, Gong W, Lv J, Xiong X, Wu C. Accumulation of floating microplastics behind the three gorges dam. Environ Pollut. 2015;204:117-23. doi: 10.1016/j.envpol.2015.04.023, PMID 25935612

2. Fok L, Cheung PK, Tang G, Li WC. Size distribution of stranded small plastic debris on the coast of Guangdong, South China. Environ Pollut. 2017;220(Pt A):407-12. doi: 10.1016/j.envpol.2016.09.079, PMID 27717531

3. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. Marine pollution. Plastic waste inputs from land into the ocean. Science. 2015;347(6223):768-71. doi: 10.1126/science.1260352, PMID 25678662

4. Alimi OS, Farner Budarz J, Hernandez LM, Tufenkji N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol. 2018;52(4):1704-24. doi: 10.1021/acs.est.7b05559, PMID 29265806

5. Lambert S, Wagner M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere. 2016;145:265-8. doi: 10.1016/j.chemosphere.2015.11.078, PMID 26688263

6. Van Cauwenberghe L, Devriese L, Galgani F, Robbens J, Janssen CR. Microplastics in sediments: A review of techniques, occurrence and effects. Mar Environ Res. 2015;111:5-17. doi: 10.1016/j. marenvres.2015.06.007, PMID 26095706

7. GESAMP. Sources, fate and effects of microplastics in the marine environment: A global assessment. In: Kershaw PJ, editor. Rep Study Group of Experts on the Scientific Aspects of Marine Environmental Protection GESAMP. Vol. 90. Spain: GESAMP; 2015. p. 1-96.

8. Hartmann NB, Hüffer T, Thompson RC, Hassellöv M, Verschoor A, Daugaard AE, et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ Sci Technol. 2019 Feb 5;53(3):1039-47. doi: 10.1021/acs.est.8b05297, PMID 30608663

9. Auta HS, Emenike CU, Fauziah SH. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ Int. 2017 Mar;102:165-76. doi: 10.1016/j.envint.2017.02.013, PMID 28284818

10. Frias JP, Nash R. Microplastics: Finding a consensus on the definition. Mar Pollut Bull. 2019 Mar;138:145-7. doi: 10.1016/j. marpolbul.2018.11.022, PMID 30660255

11. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ Sci Technol. 2012 Mar 6;46(6):3060-75. doi: 10.1021/es2031505, PMID 22321064

12. Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011 Aug;62(8):1596-605. doi: 10.1016/j.marpolbul.2011.05.030, PMID 21742351

13. Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems. Angew Chem Int Ed Engl. 2017 Feb 6;56(7):1720-39. doi: 10.1002/ anie.201606957, PMID 27618688

14. Zorah M, Mudhafar M, Naser HA, Mustapa IR. The promises of the potential uses of polymer biomaterials in biomedical applications and their challenges. Int J Appl Pharm. 2023;15(4):27-36. doi: 10.22159/ ijap.2023v15i4.48119

15. Dixit N, Trivedi A, Ahirwar D. Polyethylene glycol-chitosan nanoparticle gel for the controlled nasal delivery of noscapine

against glioma. Int J Appl Pharm. 2022;14(3):153-61. doi: 10.22159/ ijap.2022v14i3.43779

16. Patil R, Desai S. Advances in bioremediation agents and processes for removal of persistent contaminants from environment. Int J Pharm Pharm Sci. 2024 May;16(5):42-7. doi: 10.22159/ijpps.2024v16i5.50724

17. Galus M, Kirischian N, Higgins S, Purdy J, Chow J, Rangaranjan S, et al. Chronic, low concentration exposure to pharmaceuticals impacts multiple organ systems in zebrafish. Aquat Toxicol. 2013;132-133: 200-11. doi: 10.1016/j.aquatox.2012.12.021, PMID 23375851

18. Fono LJ, Sedlak DL. Use of the chiral pharmaceutical propranolol to identify sewage discharges into surface waters. Environ Sci Technol. 2005;39(23):9244-52. doi: 10.1021/es047965t, PMID 16382949

19. Hordern BK, Baker DR. Enantiomeric profiling of chiral drugs in wastewater and receiving waters. Environ Sci Technol. 2012;46(3):1681-91. doi: 10.1021/es203113y, PMID 22208427

20. Zhang C, Lin X, Gao P, Zhao X, Ma C, Wang L, et al. Combined effects of microplastics and excess boron on Microcystis aeruginosa. Sci Total Environ. 2023;891:164298. doi: 10.1016/j.scitotenv.2023.164298, PMID 37236469

21. Wang L, Chen J, Zhang X, Xu M, Zhang X, Zhao W, et al. Effects of microplastics and tetracycline on intestinal injury in mice. Chemosphere. 2023;337:139364. doi: 10.1016/j.chemosphere.2023.139364, PMID 37391084

22. Wang B, Qu H, Ma R, Barrett H, Han J, Wang F, et al. How microplastics affect chiral illicit drug methamphetamine in aquatic food chain? From green alga (Chlorella pyrenoidosa) to freshwater snail (Cipangopaludina cathayensis). Environ Int. 2020;136:105480.

23. Lv M, Zhang T, Ya H, Xing Y, Wang X, Jiang B. Effects of heavy metals on the adsorption of ciprofloxacin on polyethylene microplastics: Mechanism and toxicity evaluation. Chemosphere. 2023;315:137745. doi: 10.1016/j.chemosphere.2023.137745, PMID 36608883

24. Qu H, Wang F, Barrett H, Wang B, Han J, Wu J, et al. Synthetical effect of microplastics and chiral drug amphetamine on a primary food source algae Chlorella pyrenoids. Food Chem Toxicol. 2022;169:113415. doi: 10.1016/j.fct.2022.113415

25. Liu B, Yu D, Ge C, Luo X, Du L, Zhang X, et al. Combined effects of microplastics and chlortetracycline on the intestinal barrier, gut microbiota, and antibiotic resistome of Muscovy ducks (Cairina moschata). Sci Total Environ. 2023;887:164050. doi: 10.1016/j. scitotenv.2023.164050, PMID 37178843

26. Prata JC, Lavorante BR, Montenegro MD, Guilhermino L. Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquat Toxicol. 2018;197:143-52. doi: 10.1016/j.aquatox.2018.02.015, PMID 29494946

27. Wilkinson JL, Boxall AB, Kolpin DW, Leung KM, Lai RW, Galbán- Malagón C, et al. Pharmaceutical pollution of the world’s rivers. Proc Natl Acad Sci U S A. 2022;119(8):e2113947119. doi: 10.1073/ pnas.2113947119, PMID 35165193

28. Maubach KA, Rupniak NM, Kramer MS, Hill RG. Novel strategies for pharmacotherapy of depression. Curr Opin Chem Biol. 1999;3(4):481-8. doi: 10.1016/S1367-5931(99)80070-2, PMID 10419849

29. Shi Y, Chen C, Han Z, Chen K, Wu X, Qiu X. Combined exposure to microplastics and amitriptyline caused intestinal damage, oxidative stress and gut microbiota dysbiosis in Zebrafish (Danio rerio). Aquat Toxicol. 2023;260:106589. doi: 10.1016/j.aquatox.2023.106589, PMID 37245408

30. Zhang Y, Chen C, Chen K. Combined exposure to microplastics and amitriptyline induced abnormal behavioral responses and oxidative stress in the eyes of Zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol. 2023;273:109717. doi: 10.1016/j. cbpc.2023.109717, PMID 37586580

31. Ashton K, Holmes L, Turner A. Association of metals with plastic production pellets in the marine environment. Mar Pollut Bull. 2010;60(11):2050-5. doi: 10.1016/j.marpolbul.2010.07.014, PMID 20696443

32. Holmes LA, Turner A, Thompson RC. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ Pollut. 2012;160(1):42-8. doi: 10.1016/j.envpol.2011.08.052, PMID 22035924

33. Zhang YW, Tang M, Jin X, Liao CS, Yan CH. Polymeric adsorption behavior of nanoparticulate yttria stabilized zirconia and the deposition of as-formed suspensions on dense α-Al2O3 substrates. Solid State Sci. 2003;5(3):435-40. doi: 10.1016/S1293-2558(03)00043-8

34. Jośko I, Oleszczuk P, Skwarek E. The bioavailability and toxicity of ZnO and Ni nanoparticles and their bulk counterparts in different sediments. J Soils Sediments. 2016;16(6):1798-808. doi: 10.1007/ s11368-016-1365-x

35. Klingshirn C. ZnO: Material, physics and applications. Chemphyschem. 2007;8(6):782-803. doi: 10.1002/cphc.200700002, PMID 17429819

36. Adams LK, Lyon DY, Alvarez PJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 2006;40(19):3527-32. doi: 10.1016/j.watres.2006.08.004, PMID 17011015

37. Li M, Lin D, Zhu L. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut. 2013;173:97-102. doi: 10.1016/j.envpol.2012.10.026, PMID 23202638

38. Manzo S, Miglietta ML, Rametta G, Buono S, Di Francia G. Embryotoxicity and spermiotoxicity of nanosized ZnO for Mediterranean sea urchin Paracentrotus lividus. J Hazard Mater. 2013;254-255:1-9. doi: 10.1016/j.jhazmat.2013.03.027, PMID 23571067

39. Oleszczuk P, Jośko I, Skwarek E. Surfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna. Ecotoxicology. 2015;24(9):1923-32. doi: 10.1007/s10646-015-1529-2, PMID 26410374

40. Ma H, Williams PL, Diamond SA. Ecotoxicity of manufactured ZnO nanoparticles--a review. Environ Pollut. 2013;172:76-85. doi: 10.1016/j.envpol.2012.08.011, PMID 22995930

41. Yamabi S, Imai H. Growth conditions for wurtzite zinc oxide films in aqueous solutions. J Mater Chem. 2002;12(12):3773-8. doi: 10.1039/ b205384e

42. Liufu S, Xiao H, Li Y. Investigation of PEG adsorption on the surface of zinc oxide nanoparticles. Powder Technol. 2004;145(1):20-4. doi: 10.1016/j.powtec.2004.05.007

43. Landy M, Freiberger A. Studies of ice adhesion: I. Adhesion of ice to plastics. J Colloid Interface Sci. 1967;25(2):231-44. doi: 10.1016/0021- 9797(67)90026-4

44. Li J, Mao S, Ye Y, Lü J, Jing F, Guo Y, et al. Micro-polyethylene particles reduce the toxicity of nano zinc oxide in marine microalgae by adsorption. Environ Pollut. 2021;290:118042. doi: 10.1016/j. envpol.2021.118042, PMID 34523509

45. Zhang J, Bai Y, Meng H, Zhu Y, Yue H, Li B, et al. Combined toxic effects of polystyrene microplastics and 3,6-dibromocarbazole on zebrafish (Danio rerio) embryos. Sci Total Environ. 2024;913:169787. doi: 10.1016/j.scitotenv.2023.169787, PMID 38181941

46. Jian M, Chen X, Liu S, Liu Y, Liu Y, Wang Q, et al. Combined exposure with microplastics increases the toxic effects of PFOS and its alternative F-53B in adult zebrafish. Sci Total Environ. 2024;920:170948. doi: 10.1016/j.scitotenv.2024.170948, PMID 38365036

47. Islam N, Garcia Da Fonseca TG, Vilke J, Gonçalves JM, Pedro P, Keiter S, et al. Perfluorooctane sulfonic acid (PFOS) adsorbed to polyethylene microplastics: Accumulation and ecotoxicological effects in the clam Scrobicularia plana. Mar Environ Res. 2021;164:105249. doi: 10.1016/j.marenvres.2020.105249, PMID 33477023

48. Wang H, Wang Y, Wang Q, Lv M, Zhao X, Ji Y, et al. The combined toxic effects of polyvinyl chloride microplastics and di(2-ethylhexyl) phthalate on the juvenile zebrafish (Danio rerio). J Hazard Mater. 2022;440:129711. doi: 10.1016/j.jhazmat.2022.129711, PMID 35933861

49. Zhang SQ, Li P, He SW, Xing SY, Cao ZH, Zhao XL, et al. Combined effect of microplastic and triphenyltin: Insights from the gut-brain axis. Environ Sci Ecotechnol. 2023;16:100266. doi: 10.1016/j. ese.2023.100266, PMID 37096249

50. Best C, Melnyk-Lamont NM, Gesto M, Vijayan MM. Environmental levels of the antidepressant venlafaxine impact the metabolic capacity of rainbow trout. Aquat Toxicol. 2014;155:190-8. doi: 10.1016/j. aquatox.2014.06.014, PMID 25036621

51. Minguez L, Farcy E, Ballandonne C, Lepailleur A, Serpentini A, Lebel JM, et al. Acute toxicity of 8 antidepressants: What are their modes of action? Chemosphere. 2014;108:314-9. doi: 10.1016/j. chemosphere.2014.01.057, PMID 24534154

52. Bisesi JH Jr., Bridges W, Klaine SJ. Effects of the antidepressant venlafaxine on fish brain serotonin and predation behavior. Aquat Toxicol. 2014;148:130-8. doi: 10.1016/j.aquatox.2013.12.033, PMID 24486880

53. Li Z, Gomez E, Fenet H, Chiron S. Chiral signature of venlafaxine as a marker of biological attenuation processes. Chemosphere. 2013;90(6):1933-8. doi: 10.1016/j.chemosphere.2012.10.033, PMID 23159067

54. Qu H, Ma R, Wang B, Barrett H, Han J, Wu J, et al. Enantiospecific toxicity, distribution and bioaccumulation of chiral antidepressant venlafaxine and its metabolite in loach (Misgurnus anguillicaudatus) co-exposed to microplastic and the drugs. J Hazard Mater. 2018;370:203-11.

55. First Sentier MU. Sustainability. Sources of Microplastics and Their Distribution in the Environment. Available from: https://www. firstsentier/mufg/sustainability.com/insight/sources/of/microplastics/ and/their/distribution-in-the-environment.html

56. Plastic Pollution Affects 88 Per Cent of Marine Species: WWF. Front Line; 2022 Feb 8. Available from: https://frontline.thehindu.com/ dispatches/plastic/pollution/affects/88/per/cent/of/marine/species/says/ wwf-report/article65220340.ece

Published

07-09-2025

How to Cite

KRANTHI YALLA, et al. “MICROPLASTIC-DRUG INTERACTIONS: UNVEILING COMBINED EFFECTS ON BIOLOGICAL SYSTEMS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 9, Sept. 2025, pp. 20-27, doi:10.22159/ajpcr.2025v18i9.55404.

Issue

Section

Review Article(s)