IDENTIFICATION OF THE ISOLATED COMPONENTS AND STUDY OF ANTIFUNGAL AND ANTICANCER ACTIVITY OF THE EXTRACTS OF POLYSIPHONIA SUBTILISSIMA MONTAGNE
DOI:
https://doi.org/10.22159/ajpcr.2025v18i10.55606Keywords:
Polysiphonia subtilissima Montagne, Indole-3-acetic acid, 6-Bromoindole, agarose, carrageenan, MTT assay, A549, Candida albicans, Doxorubicin,, Amphotericin B.Abstract
Objective: We previously identified the presence of different primary and secondary metabolites in Polysiphonia substilissimia Montagne, a red alga from the eastern coast of Odisha. Now, we have isolated and identified a few constituents from the bioactive methanol extract and assessed the anticancer and antifungal activities of the three extracts.
Methods: Mass spectrometry determined the molecular weights of the components isolated by column chromatography. The probable structures for the m/z values were found from several databanks and validated using FTIR, 1HNMR, and 13CNMR. HPLC verified component purity. The isolated components were compared to commercial pure compounds. The extracts and their components' IC50 values were assessed using A549 lung cancer cell line MTT tests. The greatest zone of inhibition for antifungal activity was compared to doxorubicin and amphotericin B using Candida albicans, MTCC 854.
Results: Isolated components A and B, 6-bromoindole and indole-3-acetic acid, had Rf values of 0.94 and 0.86 at 194.97 and 174.06 m/z. Agarose and carrageenan were extracted with structure elucidation. Candida albicans was inhibited by ethanol extract. The three extracts and isolated components did not inhibit A549 NSCLC cell growth.
Conclusion: Indole-3-acetic acid (auxin) was extensively observed throughout the winter season due to its association with the growth phase and harvesting period. 6-Bromoindole serves as a precursor for the synthesis of secondary metabolites in algae. Agarose, derived from agar and carrageenan, is ubiquitous in all red algae. The extracts and isolates exhibited no anti-lung cancer efficacy against the A549 cell line. The ethanolic extracts demonstrated notable antifungal efficacy.
Downloads
References
1. Choudhury R, Sahoo N. Phytochemical evaluation and bioactivity of Polysiphonia subtilissima montagne. Asian J Chem. 2024 Aug 30;36(9):2083-8. doi: 10.14233/ajchem.2024.32122
2. Molecular Weight Search. Available from: https://webbook.nist.gov/ chemistry/mw-ser [Last accessed on 2024 Jul 15].
3. Poynton EF, van Santen JA, Pin M, Contreras MM, McMann E, Parra J, et al. The natural products Atlas 3.0: Extending the database of microbially derived natural products. Nucleic Acids Res. 2025;53(D1):D691-9. doi: 10.1093/nar/gkae1093, PMID 39588755
4. Zhao H, Yang Y, Shuaiqi W. NPASS database update 2023: Quantitative natural product activity and species source database for biomedical research. Nucleic Acids Res. 2022 Nov 29;51(1):D621-8. doi: 10.1093/ nar/gkac1069
5. Available from: https://chemdata.nist.gov/dokuwiki/doku. php?id=chemdata: msms [Last accessed on 2024 Aug 15].
6. AIST. Spectral Database for Organic Compounds, SDBS. Available from: https://sdbs.db.aist.go.jp [Last accessed on 2024 Aug 15].
7. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016 Aug 9;34(8):828-37. doi: 10.1038/nbt.3597, PMID 27504778
8. Available from: https://pubchem.ncbi.nlm.nih.gov [Last accessed on 2024 Aug 15].
9. ChemSpider. Available from: https://www.chemspider.com/ structuresearch [Last accessed on 2024 Aug 15].
10. Zdrazil B, Felix E, Hunter F, Manners EJ, Blackshaw J, Corbett S, et al. The ChEMBL Database in 2023: A drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 2024 Jan 5;52(D1):D1180-92. doi: 10.1093/nar/gkad1004, PMID 37933841
11. Irwin JJ, Tang KG, Young J, Dandarchuluun C, Wong BR, Khurelbaatar M, et al. ZINC20-A free ultra large-scale chemical database for ligand discovery. J Chem Inf Model. 2020 Oct 29;60(12):6065-73. doi: 10.1021/acs.jcim.0c00675, PMID 33118813
12. Guiry MD, Guiry GM. AlgaeBase: An on-line resource for Algae. Algae base. Cryptogam Algologie. 2014 May 30;35(2):105-15.
13. Lyu C, Chen T, Qiang B, Liu N, Wang H, Zhang L, et al. LCMNPD: A comprehensive marine natural products database towards facilitating drug discovery from the ocean. Nucleic Acids Res. 2021 Jan 8;49(D1):D509-15. doi: 10.1093/nar/gkaa763, PMID 32986829
14. Elsie BH, Dhanarajan MS, Sudha PN. Nvitro screening of secondary metabolites and antimicrobial activities of ethanol and acetone extracts from red seaweed Gelidium aserosa. Int J Chem Res. 2011 Jan 1;2(20):27-9.
15. Ashwini S, Suresh BV, Saritha SM, Shantaram MS. Seaweed extracts exhibit anticancer activity against HeLa cell lines. Int J Curr Pharm Res. 2016 Dec 5;9(1):114-7. doi: 10.22159/ijcpr.2017v9i1.16632
16. Gupta P, Sinha D, Bandopadhyay R. Solation and screening of marine microalgae Chlorella sp. _pr1 for anticancer activity. Int J Pharm Pharm Sci. 2014 Oct 5;6(10):517-9.
17. Ravilla L, Lavanya M, Padmini R. Sustained anticancer effect by naringin-loaded zinc oxide nanoparticles in human lung adenocarcinoma A549 cells. Int J App Pharm. 2023;15:315-25. doi: 10.22159/ ijap.2023v15i6.48848
18. Meerloo JV, Kaspers GJ, Cloos J. Cell sensitivity assays: The MTT assay. Methods Mol Biol. 2011 Mar 24;731:237-45. doi: 10.1007/978- 1-61779-080-5_20, PMID 21516412
19. Abdullah N, Patil AB. Designing of novel topical in situ polymeric film-forming solution spray formulation of antifungal Agent: In vitro activity and in vivo characterization. Int J App Pharm. 2022 Nov 21;14(1):169-84. doi: 10.22159/ijap.2022v14i1.43581
20. Johnson-Arbor K, Dubey R. Doxorubicin. StatPearls; 2023. Availablefrom: https://www.ncbi.nlm.nih.gov/books/NBK459232 [Last accessed on 2024 Aug 20].
21. Cavassin FB, Baú-Carneiro JL, Vilas-Boas RR, Queiroz-Telles F. Sixty years of amphotericin B: An overview of the main antifungal agent used to treat invasive fungal infections. Infect Dis Ther. 2021 Feb 1;10(1):115-47. doi: 10.1007/s40121-020-00382-7, PMID 33523419
22. Mohamed NZ, Shaaban L, Safan S, El-Sayed AS. Phytochemical and metabolic profiling of the different Podocarpus species in Egypt: Potential antimicrobial and antiproliferative activities. Heliyon. 2023 Sep 8;9(9):e20034. doi: 10.1016/j.heliyon.2023.e20034, PMID 37810029
23. Dhaouafi J, Nedjar N, Jridi M, Romdhani M, Balti R. Extraction of protein and bioactive compounds from Mediterranean red algae (Sphaerococcus coronopifolius and Gelidium spinosum) using various innovative pretreatment strategies. Foods. 2024 Apr 28;13(9):1362. doi: 10.3390/foods13091362, PMID 38731733
24. Cabrita MT, Vale C, Rauter AP. Halogenated compounds from marine algae. Mar Drugs. 2010 Aug 9;8(8):2301-17. doi: 10.3390/md8082301, PMID 20948909
25. Martínez-Sanz M, Gómez-Mascaraque LG, Ballester AR, Martínez- Abad A, Brodkorb A, López-Rubio A. Production of unpurified agar-based extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols. Algal Res. 2019 Jan 15;38:101420. doi: 10.1016/j.algal.2019.101420
26. Provonchee RB. Camden, Me. Agarose purif method using glycol. US Patent 1991 Feb 5;4(990):611.
27. Jönsson M, Allahgholi L, Sardari RR, Hreggviðsson GO, Nordberg Karlsson EN. Extraction and modification of macroalgal polysaccharides for current and next-generation applications. Molecules. 2020 Feb 19;25(4):930. doi: 10.3390/molecules25040930, PMID 32093097
28. Rupert R, Rodrigues KF, Thien VY, Yong WT. Carrageenan from Kappaphycus alvarezii (Rhodophyta, Solieriaceae): Metabolism, structure, production, and application. Front Plant Sci. 2022 May 10;13:859635. doi: 10.3389/fpls.2022.859635, PMID 35620679
29. Morgan DM. Tetrazolium (MTT) assay for cellular viability and activity. Methods Mol Biol. 1998;79:199879:179-83. doi: 10.1385/0- 89603-448-8:179, PMID 9463833
30. van Meerloo JV, Kaspers GJ, Cloos J. Cell sensitivity assays: The MTT assay. Methods Mol Biol. 2011 Mar 24;731:237-45. doi: 10.1007/978- 1-61779-080-5_20, PMID 21516412
31. Christenson J, Korgenski E, Relich R. Laboratory diagnosis of infection due to bacteria, fungi, parasites, and Rickettsieae. In: Principles and Practice of Pediatric Infectious Diseases. 5th ed. Amsterdam: Elsevier; 2017 Jul 18. p. 1422-34. doi: 10.1016/B978-0-323-40181-4.00286-3
32. Approved Standard. CLSI Document MO7. CLSI Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grows Aerobically. 9th ed., Vol. A9. Wayne: Clinical and Laboratory Standards Institute; 2012. Available from: https://microbenotes.com/mcfarland-standards
33. MestReNova, Ver. 6.0.2-5475, Mestrelab Research SL; 2009. Available from: https://mestrelab.com
34. Trivedi TJ, Kumar A. Efficient extraction of agarose from red algae using ionic liquids. Green Sustain Chem. 2014;4(4):190-201. doi: 10.4236/gsc.2014.44025
35. Yang JS, Xie YJ, He W. Research progress on chemical modification of alginate: A review. Carbohydr Polym. 2011 Feb;84(1):33-9. doi: 10.1016/j.carbpol.2010.11.048
36. Abu Bakar MH, Azeman NH, Mobarak NN, Mokhtar MH, Bakar AA. Effect of active site modification towards performance enhancement in biopolymer κ-carrageenan derivatives. Polymers. 2020 Sep 8;12(9):2040. doi: 10.3390/polym12092040, PMID 32911662
37. Kolender AA, Matulewicz MC. Hydrogel-forming algae polysaccharides: From seaweed to biomedical applications. Carbohydr Res. 2004;339(9):1619-29. doi: 10.1016/j.carres.2004.03.029, PMID 15183736
38. Jiang YP, Guo XK, Tian XF. Synthesis and NMR structural analysis of O-succinyl derivative of low-molecular-weight κ-carrageenan. Carbohydr Polym. 2005 Sep 21;61(4):399-406. doi: 10.1016/j. carbpol.2005.05.016
39. Gupta P, Goel A, Singh KR, Meher MK, Gulati K, Poluri KM. Dissecting the anti-biofilm potency of kappa-carrageenan capped silver nanoparticles against Candida species. Int J Biol Macromol. 2021 Mar 1;172:30-40. doi: 10.1016/j.ijbiomac.2021.01.035, PMID 33440209
Published
How to Cite
Issue
Section
Copyright (c) 2025 Reshma Choudhury, Dr. Nityananda Sahoo, Dr. Nihar ranjan Kar

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.