IN VITRO ANTIOXIDANT AND MOLECULAR DOCKING STUDIES FOR ANTI-ALZHEIMER POTENTIAL OF ETHANOLIC EXTRACT OF ALTERNANTHERA SESSILIS AND LANTANA CAMARA
DOI:
https://doi.org/10.22159/ajpcr.2025v18i11.55639Keywords:
Alternanthera sessilis,, Lantana camara, Alzheimer’s disease, AChE enzyme, Gas chromatography–mass spectrometryAbstract
Objectives: Oxidative stress significantly contributes to the advancement of Alzheimer’s disease (AD), and antioxidants (AOX) derived from plants are increasingly recognized for their neuroprotective properties. This research examines the in vitro AOX properties and anti-Alzheimer potential of ethanolic extracts of Alternanthera sessilis (EEAS) and methanolic extract of Lantana camara (MELC) through phytochemical screening, AOX assays, gas chromatography–mass spectrometry (GC-MS) analysis, molecular docking (MD), and ADME prediction.
Methods: Preliminary phytochemical screening identified the existence of flavonoids, phenolics, Alkaloids, sterols, and glycosides. The evaluation of AOX activity was led through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and metal chelating assays. GC-MS analysis revealed significant bioactive compounds in both extracts. The phytoconstituents were docked to AD-related targets (Aβ and AChE) to evaluate their binding affinities. ADME properties were assessed utilizing SwissADME.
Results: Indicate that both EEAS and MELC demonstrated considerable AOX activity, with MELC presenting lower IC50 values in the DPPH (204.3 μg/mL) and ABTS (327.47 μg/mL) assays relative to EEAS. GC-MS profiling identified compounds with established pharmacological significance. MD revealed multiple compounds exhibiting high binding affinity for AD targets. ADME analysis demonstrated adherence to drug-likeness criteria, indicating potential for oral bioavailability.
Conclusion: The research indicates that A. sessilis and L. camara exhibit significant AOX and anti-Alzheimer effects. Phytoconstituents may provide a basis for the advancement of neuroprotective agents. Future in vivo validation is necessary to verify their therapeutic potential.
Downloads
References
1. Adewusi EA, Moodley N, Steenkamp V. Antioxidant and acetylcholinesterase inhibitory activity of selected southern African medicinal plants. S Afr J Bot. 2011;77(3):638-44. doi: 10.1016/j. sajb.2010.12.009
2. James BD, Bennett DA. Causes and patterns of dementia: An update in the era of redefining Alzheimer’s disease. Annu Rev Public Health. 2019;40:65-84. doi: 10.1146/annurev-publhealth-040218-043758, PMID 30642228
3. Lopa SS, Hasan MK, Ahammed MS, Islam KM, Alam AK, Rahman MA, et al. Typhonium trilobatum demonstrates both antioxidant and acetylcholinesterase inhibitory activities in vitro. Bangladesh Pharm J. 2019;22(1):92-8. doi: 10.3329/bpj.v22i1.40080
4. Das N, Raymick J, Sarkar S. Role of metals in Alzheimer’s disease. Metab Brain Dis. 2021;36(7):1627-39. doi: 10.1007/s11011-021- 00765-w, PMID 34313926
5. Elufioye TO, Chinaka CG, Oyedeji AO. Antioxidant and anticholinesterase activities of Macrosphyra longistyla (DC) hiern relevant in the management of Alzheimer’s disease. Antioxidants (Basel). 2019;8(9):400. doi: 10.3390/antiox8090400, PMID 31527476
6. Reza AA, Hossain MS, Akhter S, Rahman MR, Nasrin MS, Uddin MJ, et al. In vitro antioxidant and cholinesterase inhibitory activities of Elatostema papillosum leaves and correlation with their phytochemical profiles: A study relevant to the treatment of Alzheimer’s disease. BMC Complement Altern Med. 2018;18(1):123.
7. Masondo NA, Stafford GI, Aremu AO, Makunga NP. Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treatment. S Afr J Bot. 2019;120:39-64. doi: 10.1016/j.sajb.2018.09.011
8. Sajjad N, Wani A, Hassan S, Ali R, Hamid R, Akbar S, et al. Interplay of antioxidants in Alzheimer’s disease. J Transl Sci. 2019;5:1-11.
9. Dey M, Singh RK. Neurotoxic effects of aluminium exposure as a potential risk factor for Alzheimer’s disease. Pharmacol Rep. 2022;74(3):439-50. doi: 10.1007/s43440-022-00353-4, PMID 35088386
10. Mottay D, Neergheen-Bhujun VS. Anticholinesterase and antioxidant effects of traditional herbal medicines used in the management of neurodegenerative diseases in Mauritius. Arch Med Biomed Res. 2016;2(4):114-30. doi: 10.4314/ambr.v2i4.211. Sinha P, Arora VK, Wahi SP. Chemical investigation on Alternanthera sessilis. Indian Drugs. 1984;21:139-40.
12. Al-Snafi AE. Chemical constituents and pharmacological activities of Lantana camara - a review. Asian J Pharm Clin Res. 2019;12(12):10-20. doi: 10.22159/ajpcr.2019.v12i12.35662
13. Mahdi-Pour B, Jothy SL, Latha LY, Chen Y, Sasidharan S. Antioxidant activity of methanol extracts of different parts of Lantana camara. Asian Pac J Trop Biomed. 2012;2(12):960-5. doi: 10.1016/S2221- 1691(13)60007-6, PMID 23593576
14. Ahmad N, Fazal H, Abbasi BH, Farooq S, Ali M, Khan MA. Biological role of Piper nigrum L. (black pepper): A review. Asian Pac J Trop Biomed. 2012;2(3):S1945-53. doi: 10.1016/S2221-1691(12)60524-3
15. Campbell MK, Farrell SO. Biochemistry. 4th ed. Singapore: Thomson Asia Pte Ltd.; 2005.
16. Sasidharan A, Deepthi K, Dixit S, Singh D, Tom VV, Somayaji Y, et al. In silico evaluation of CSF1R inhibitors: A promising approach for targeting neuroinflammation in neurodegenerative diseases. Int J Appl Pharm. 2025;17(2):268-80.
17. Thomas A, Azam MA. In silico design and identification of potential D-ALA: D-ALA ligase inhibitors against Staphylococcus aureus. Int J Appl Pharm. 2025;17(4):401-7.
18. Suri C, Naik PK. Elucidating the precise interaction of reduced and oxidized states of neuroglobin with Ubc12 and Cop9 using molecular mechanics studies. Int J Fundam Appl Sci. 2012;1:74-7.
19. Usha T, Tripathi P, Pande V, Middha SK. Molecular docking and quantum mechanical studies on pelargonidin-3-glucoside as renoprotective ACE inhibitor. ISRN Comput Biol. 2013;2013:428378. doi: 10.1155/2013/428378
20. Palleti JD, Jyothsna P, Muppalaneni NB, Chitti S. Virtual screening and molecular docking analysis of Zap-70 kinase inhibitors. Int J Chem Anal Sci. 2011;29:1208-11.
21. Ladokun OA, Abiola A, Okikiola D, Ayodeji F. GC-MS and molecular docking studies of Hunteria umbellata methanolic extract as a potent anti-diabetic. Inform Med Unlocked. 2018;13:1-8. doi: 10.1016/j. imu.2018.08.001
22. Kandeel M, Kitade Y. Computational analysis of siRNA recognition by the Ago2 PAZ domain and identification of the determinants of RNA-induced gene silencing. PLoS One. 2013;8(2):e57140. doi: 10.1371/ journal.pone.0057140, PMID 23441235
23. Oriakhi K, Oikeh EI, Ezeugwu N, Anoliefo O, Aguebor O, Omoregie ES. Comparative antioxidant activities of extracts of Vernonia amygdalina and Ocimum gratissimum leaves. J Agric Sci. 2013;6(1):13. doi: 10.5539/jas.v6n1p13
24. Noman OM, Nasr FA, Alqahtani AS, Al-Zharani M, Cordero MA, Alotaibi AA, et al. Comparative study of antioxidant and anticancer activities and HPTLC quantification of rutin in white radish (Raphanus sativus L.) leaves and root extracts grown in Saudi Arabia. Open Chem. 2021;19(1):408-16. doi: 10.1515/chem-2021-0042
25. Rahman MM, Islam MB, Biswas M, Khurshid Alam AH. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes. 2015;8(1):621. doi: 10.1186/s13104-015-1618-6
26. Akar Z, Küçük M, Doğan H. A new colorimetric DPPH (•) scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J Enzyme Inhib Med Chem. 2017;32(1):640-7. doi: 10.1080/14756366.2017.1284068, PMID 28262029
27. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-7. doi: 10.1016/s0891-5849(98)00315-3, PMID 10381194
28. Shen GB, Xie L, Wang YX, Gong TY, Wang BY, Hu YH, et al. Quantitative estimation of the hydrogen-atom-donating ability of 4-substituted Hantzsch ester radical cations. ACS Omega. 2021;6(36):23621-9. doi: 10.1021/acsomega.1c03872, PMID 34549160
29. Graham WV, Bonito-Oliva A, Sakmar TP. Update on Alzheimer’s disease therapy and prevention strategies. Annu Rev Med. 2017;68:413- 30. doi: 10.1146/annurev-med-042915-103753, PMID 28099083
30. Mettupalayam KS, Kilavan PK. In vitro enzyme inhibitory and cytotoxic studies with Evolvulus alsinoides (Linn.) Linn. leaf extract: A plant from Ayurveda recognized as Dasapushpam for the management of Alzheimer’s disease and diabetes mellitus. BMC Complement Med Ther. 2020;20:129.
31. Khan W, Subhan S, Shams DF, Afridi SG, Ullah R, Shahat AA, et al. Antioxidant potential, phytochemicals composition, and metal contents of Datura alba. Biomed Res Int. 2019;2019:2403718. doi: 10.1155/2019/2403718, PMID 31317024
32. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615-23. doi: 10.1021/ jm020017n, PMID 12036371
33. Mohapatra S, Prasad A, Haque F, Ray S, De B, Ray SS. In silico investigation of black tea components on α-amylase, α-glucosidase and lipase. J Appl Pharm Sci. 2015;5(12):42-7.
34. Meyer EA, Castellano RK, Diederich F. Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed Engl. 2003;42(11):1210-50. doi: 10.1002/anie.200390319, PMID 12645054
Published
How to Cite
Issue
Section
Copyright (c) 2025 Mohammad Ali2, Sarvaraidu Ch

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.