BIOCHEMICAL STUDY OF NEW CHALCONE BASED ON CHROMONYL THIADIAZOLINE DERIVATIVE
DOI:
https://doi.org/10.22159/ajpcr.2025v18i8.55648Keywords:
Acute toxicity, Antioxidant action, Chalcone, DNA cleavage, MTT viability assay, ThiadiazolineAbstract
Objectives: This study aimed to synthesize and characterize a novel chalcone compound (ZH) derived from chromonyl thiadiazoline and to assess its biological activities, including antibacterial, antioxidant, and anticancer properties, as well as its fluorescence characteristics and DNA cleavage capability.
Methods: The ZH molecule was synthesized and characterized structurally by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, multinuclear nuclear magnetic resonance (1H, 13C), and mass spectrometry. The acute toxicity was evaluated using Dixon’s up-and-down approach to ascertain the lethal dose 50% (LD50) value. The antibacterial efficacy was assessed using the minimum inhibitory concentration (MIC) method against Gram-positive bacteria (Streptococcus aureus and Bacillus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The antioxidant activity was evaluated relative to the standard antioxidant butylated hydroxytoluene (BHT). The cytotoxic effect on MCF-7 breast cancer cells was assessed using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT) test after 72 h of treatment. The compound’s fluorescence characteristics and DNA cleavage activities were examined.
Results: The ZH compound demonstrated greater toxicity than its counterpart (2), as evidenced by a reduced LD50 value. It exhibited significant antibacterial efficacy, particularly against Gram-positive bacteria, with a MIC of 5 mg/mL. While ZH had notable antioxidant action, it was inferior to BHT (82%). The MTT assay demonstrated substantial cytotoxicity against MCF-7 cells, yielding an IC50 value of 45.54 μg/mL, which is markedly lower than that of the reference medication 5-Fluorouracil 5-FU (IC50 = 98.17 μg/mL). The molecule demonstrated significant fluorescence and efficient DNA cleavage activity.
Conclusion: The synthesized ZH molecule has considerable bioactive properties, notably its antibacterial and anticancer efficacy, indicating substantial pharmacological potential. These findings underscore its significance for forthcoming advancements in medicinal chemistry and pharmaceutical design.
Downloads
References
1. Rahman MA, Shakya AK, Wahab S, Ansari NH. Study on the antimicrobial activity and synthesis of novel derivatives of selenadiazole and thiazole. Bulg Chem Commun. 2014;46(4):750-6. doi: 10.1016/j. bcc.2014.01.022
2. Koutentis PA, Constantinides CP. In: Zhdankin VV, Katritzky AR, Ramsden CA, Scriven EF, Taylor RJ, editors. Comprehensive Heterocyclic Chemistry III. Oxford: Elsevier; 2008. p. 567-605. doi: 10.1016/B978-008043126-3.50006-4
3. Al-Balas QA, Al-Smadi ML, Hassan MA, Al Jabal GA, Almaaytah AM, Alzoubi KH. Multi-armed 1,2,3-selenadiazole and 1,2,3-thiadiazole benzene derivatives as novel glyoxalase-I inhibitors. Molecules. 2019;24(18):3210. doi: 10.3390/molecules24183210, PMID 31487813
4. Ebrahimi HP, Hadi JS, Alsalim TA, Ghali TS, Bolandnazar Z. A novel series of thiosemicarbazone drugs: From synthesis to structure. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:1067-77. doi: 10.1016/j.saa.2014.08.146, PMID 25291504
5. Shrivastava K, Purohit S, Singhal S. Studies on nitrogen and sulphur containing heterocyclic compound: 1,3,4-thiadiazole. Asian J Biomed Pharm Sci. 2013;3(21):6-23. doi: 10.5958/j.0974-8346.3.21.2
6. Soriano-Garcia M. Organoselenium compounds as potential therapeutic and chemopreventive agents: A review. Curr Med Chem. 2004;11(12):1657-69. doi: 10.2174/0929867043365053, PMID 15180570
7. Kornis G. 1,3,4-thiadiazoles. In: Katritzky AR, Rees CW, editors. Comprehensive Heterocyclic Chemistry. Oxford: Pergamon Press; 1984. p. 545-77. doi: 10.1016/B978-008096519-2.00095-3
8. Segi M, Tanno K, Kojima M, Honda M, Nakajima T. An efficient 1,3-dipolar cycloaddition between aromatic selenoaldehydes and nitrile oxides or nitrile imines: An easy access to selenium-containing five-membered heterocyclic ring system. Tetrahedron Lett. 2007;48(13):2303-6. doi: 10.1016/j.tetlet.2007.01.153
9. Koguro K, Oga T, Mitsui S, Orita R. Novel synthesis of 5 substituted tetrazoles from nitriles. Synthesis 1998;1998:910-4. doi: 10.1055/ s 1998 2081
10. Duncia JV, Pierce ME, Santella JB. Synthesis and biological activity of thiadiazole derivatives. J Org Chem. 1991;56:2395-400. doi: 10.1021/ jo00010a002
11. Huff BE, Staszak MA. Synthesis and antimicrobial activity of1,3,4-thiadiazole derivatives. Tetrahedron Lett. 1993;34(50):8011-4. doi: 10.1016/S0040-4039(00)61437-5
12. Jursic E, Zdravkovski Z. Theoretical study on thiadiazole derivatives. J Mol Struct. 1964;11:118.
13. Okabayashi T, Kano H, Makisumi Y. Antimicrobial activity of thiadiazole derivatives. Chem Pharm Bull. 1960;8(2):157-62. doi: 10.1248/cpb.8.157
14. Schocken MJ, Creekmore RW, Theodoridis G, Nystrom GJ, Robinson RA. Microbial growth inhibition by Selenadiazoles. Appl Environ Microbiol. 1989;55(5):1220-2. doi: 10.1128/aem.55.5.1220- 1222.1989, PMID 16347911
15. Wang G, Sun BP, Ru ZL. Synthesis of novel thiadiazole derivatives as potential antimicrobial agents. Synth Commun. 2008;38(21):3577-85. doi: 10.1080/00397910802237641
16. Brown M. Process for Producing Substituted Thiadiazoles. U.S. Patent no 3,338,915; 1967.
17. Henry RA. Preparation of Selenium-Containing Heterocycles. U.S. Patent no 3,096,312; 1963.
18. Al-Khazragie ZK, Al-Salami BK, Al-Fartosy AJ. Synthesis, characterization, and antioxidant, antimicrobial and toxic properties of novel Δ2-1,3,4-thiadiazoline and Δ2-1,3,4-selenadiazoline derivatives. Int J Drug Deliv Technol. 2022;12(1):113-26. doi: 10.25258/ ijddt.12.1.22
19. Al-Mosawi SK, Al-Hazam HA, Abbas AF. Synthesis, characterization and biological study of some chalcones derived from Terphthaldehyde. Asian J Res Chem. 2019;12(3):4. doi: 10.5958/0974-4150.2019.00031.2
20. Al-Masoudi WA, Al-Diwan MA, Hassan IJ. Synthesis, acute toxicity and modelling docking studies of azo compound derived from sulphonamide and pyrimidine derivative. Pharm Chem. 2015;7(9):1-5.
21. Smânia A, Monache FD, Smânia EF, Cuneo RS. Antibacterial activity of steroidal compounds isolated from Ganoderma applanatum (Pers.) Pat. (Aphyllophoromycetideae) Fruit Body. Int J Med Mushrooms. 1999;1(4):325-30. doi: 10.1615/intjmedmushr.v1.i4.40
22. Al-Salami BK, Al-Fadhly AL, Al-Fregi A. Synthesis, characterization and biological activity study of some new compounds containing amine and azomethine group and their platinum(II) complexes. Pharm Chem. 2016;8(19):488.
23. Al-Khazragie ZK, Al-Salami BK, Al-Fartosy JM. Synthesis, antimicrobial, antioxidant, toxicity and anticancer activity of a New azetidinone, thiazolidinone and Selenazolidinone derivatives based on sulfonamide. Indones J Chem. 2022;22(4):979-1001. doi: 10.22146/ ijc.72454
24. Al-Shammari AM, Al-Esmaeel WN, Al-Ali AA, Al-Hassan AA, Ahmed AA. Enhancement of oncolytic activity of Newcastle disease virus through combination with retinoic acid against digestive system malignancies. Mol Ther. 2019;27(4):126-7. doi: 10.1016/j. ymthe.2019.06.086
25. Freshney RI. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. 6th ed. United States: Wiley-Blackwell; 2010. p. 732.
26. Liu K, Liu PC, Liu R, Wu X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res. 2015;21:15-20. doi: 10.12659/MSMBR.893327, PMID 25664686
27. Zini A, Agarwal A. Sperm chromatin: Biological and clinical applications in male infertility and assisted reproduction. In: Agarwal A, Prakash D, editors. Reproductive medicine: Clinical Advances in the Field of Assisted Reproduction. Berlin: Springer; 2011. p. 487-515. doi: 10.1007/978-1-4419-6857-9_35
28. Bhaskar VH, Mohite PB. Recent advances in optoelectronic materials: A comprehensive review. J Optoelectron Biomed Mater. 2011;3(1):7-12.
29. Al-Kaabi MM, Rady Al-Hazam HA, Arwa MH. New insights into the electrochemical behavior of novel polythiophene derivatives. Egypt J Chem. 2021;64(8):4027-35. doi: 10.21608/ejchem.2021.78652.3585
30. Badran HA, Al-Hazam HA, Fakher Alfahad RK, Ajeel KI. Synthesis and photoluminescence properties of novel organic-inorganic hybrid thin films. J Mater Sci Mater Electron. 2021;32(8):14623-41. doi: 10.1007/s10854-021-06672-0
31. Khalib A. Al-hazam H, Hassan A. Inhibition of carbon steel corrosion by new organic 2-hydroxyselenacetamide derivatives in HCl medium. Indones J Chem. 2022;22(5):1269-81. doi: 10.22146/ijc.60217
32. Usova EB, Krapivin GD, Zavodnik VE, Kulnevich VG. Synthesis and properties of 5-furyl(aryl)-Δ2-1,2,4-triazolines and -Δ2-1,3,4- thiadiazolines. Chem Heterocycl Compd. 1994;30(10):1158-64. doi: 10.1007/bf00486895
33. Farshori NN, Banday MR, Ahmad A, Khan AU, Rauf A. Synthesis, characterization, and in vitro antimicrobial activities of 5-alkenyl/ hydroxyalkenyl-2-phenylamine-1,3, 4-oxadiazoles and thiadiazoles. Bioorg Med Chem Lett. 2010;20(6):1933-8. doi: 10.1016/j. bmcl.2010.01.126, PMID 20172722
34. Sharp DJ, Rogers GC, Scholey JM. Microtubule motors in mitosis. Nature. 2000;407(6800):41-7. doi: 10.1038/35024000, PMID 10993066
35. Rispin A, Farrar D, Margosches E, Gupta K, Stitzel K, Carr G, et al. Alternative methods for the median lethal dose (LD50) test: The up-and-down procedure for acute oral toxicity. ILAR J. 2002;43(4):233- 43. doi: 10.1093/ilar.43.4.233, PMID 12391399
36. Al-Smadi LM, Mansour R, Mahasneh A, Khabour OF, Masadeh MM, Alzoubi KH. Synthesis, characterization, antimicrobial activity, and genotoxicity assessment of two heterocyclic compounds containing 1,2,3-selena- or 1,2,3-thiadiazole rings. Molecules. 2019;24(1):4082. doi: 10.3390/molecules24224082
37. Piewngam P, Otto M. Probiotics to prevent Staphylococcus aureus disease? Gut Microbes. 2020;11(1):94-101. doi: 10.1080/19490976.2019.1591137, PMID 30913972
38. Thomba DU, Mirgane SR, Ambhure RU, Pawar R, Ameta KL. Synthesis and antimicrobial study of Novel Schiff Bases and metal complexes. Biochem Biophys Res Commun. 2017;3(1):7. doi: 10.1016/j.bbrc.2017.06.005
39. El-Sherif AA, Eldebss TM. Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5-bromosalicylaldehyde and 2-aminomethylthiophene. Spectrochim Acta A Mol Biomol Spectrosc. 2011;79A:1803-14. doi: 10.1016/j.saa.2011.06.045
40. Hejchman E, Kruszewska HK, Maciejewska D, Sowirka-Taciak B, Tomczyk M, Sztokfsz-Ignasiak A, et al. Design, synthesis, and biological activity of Schiff bases bearing Salicyl and 7-Hydroxycoumarinyl moieties. Chem Mon. 2019;150(3):255-66. doi: 10.1002/cem.3439
41. Sam N, Affan MA, Salam MA, Ahmad FB, Asaruddin MR. Synthesis, spectral characterization and biological activities of organotin (IV). Open J Inorg Chem. 2012;2(2):22-7. doi: 10.4236/ojic.2012.22004
42. Tsemeugne J, Fondjo EF, Tamokou JD, Rohand T, Ngongang AD, Kuiate JR, et al. Synthesis, characterization, and antimicrobial activity of a novel trisazo dye from 3-amino-4H-thieno. [1]benzopyran-4-one. Int J Med Chem. 2018;2018:9197821. doi: 10.1155/2018/9197821
43. Al-Fartosy AJ. Protective effect of galactomannan extracted from Iraqi Lycium barbarum L. fruits against alloxan-induced diabetes in rats. Am Biochem Biotech. 2015;11(2):73-83. doi: 10.1556/abbt.11.2015.2.2
44. Al-Fartosy AJ. Antioxidant properties of methanolic extract from Inula graveolens L. Turk J Agric For. 2011;35(6):591-6. doi: 10.3906/tar- 1011-35
45. Miladi S, Damak M. In vitro antioxidant activities of Aloe vera Leaf skin extracts. J Soc Chim Tunis. 2008;10:101-9.
46. Hasegawa M, Facile A. One-pot synthesis of 4-Alkoxy-1,3- Benzenedicarbonitrile. Heterocycles. 1998;49:857-64. doi: 10.3987/ com-97-s(n)89
47. Desmiaty Y, Faizatun F, Noviani Y, Ratih H, Ambarwati NS. Pyrazolines and chalcone derivatives: Synthesis, structural elucidation, antibacterial and antioxidant evaluation. Int J Appl Pharm. 2022;14(TI):47. doi: 10.22159/ijap.2022.v14ti.47
48. Elsherbini M, Hamama WS, Zoorob HH, Bhowmick D, Mugesh G, Wirth T. Synthesis and antioxidant activities of novel chiral ebselen analogues. Heteroat Chem. 2014;25(5):320-5. doi: 10.1002/hc.21164
49. Banik BK, Banik I, Becker FF. Asymmetric synthesis of anticancer β lactams via Staudinger reaction: Utilization of chiral ketene from carbohydrate. Eur J Med Chem 2010;45:846-8.
50. Al-Fartosy AJ, Hammad Ati M. A predictive clinical markers to make prostate cancer and benign prostate hyperplasia easy diagnosis. Biochem Cell Arch. 2021;21(2):2939-47.
51. Kurniawan SV, Sugiarti L, Wanandi SI, Louisa M. Piperine in the prevention of decreased tamoxifen sensitivity in MCF-7 breast cancer cell line. Int J Appl Pharm. 2018;10 1:335-7. doi: 10.22159/ijap.2018. v10s1.74
52. El-Desoky SI, Badria FA, Abozeid MA, Kandeel EA, Abdel- Rahman AH. Synthesis and antitumor studies of novel benzopyrano-1,2,3- selenadiazole and spiro[benzopyrano]-1,3,4- thiadiazoline derivatives. Med Chem Res. 2013;22(5):2105-14. doi: 10.1007/s00044-012-0201-0
53. Mohana KN, Kumar CB. Synthesis and antioxidant activity of 2-amino- 5-methylthiazol derivatives containing 1,3,4-oxadiazole-2-thiol moiety. ISRN Org Chem. 2013;2013:620718. doi: 10.1155/2013/620718, PMID 24052865
54. Singh FV, Wirth T. Synthesis of organoselenium compounds withpotential biological activities. In: Jain VK, Priyadarsini KI, editors. Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments. London: Royal Society of Chemistry; 2018. p. 77-121. doi: 10.1039/9781788012155-00077
55. Thomas A, Vinod B, Shenoy SK, Vishnu MV. Development of novel 1,3,4-Thiadiazoles as antitubercular agents - synthesis and in vitro screening. Int J Curr Pharm Res. 2023;15(3):37-41. doi: 10.22159/ ijcpr.2023v15i3.3009
56. Ronald B. Acridine orange staining for identifying viral infection of cells in-vitro and cellular DNA. ChemXpress. 2016;9(5):102.
57. Xia Y, Liu X, Zhang L, Zhang J, Li C, Zhang N, et al. A new schiff base coordinated copper(II) compound induces apoptosis and inhibits tumor growth in gastric cancer. Cancer Cell Int. 2019;19:81. doi: 10.1186/ s12935-019-0767-7
58. Smith DM, Kazi A, Smith L, Long TE, Heldreth B, Turos E, et al. A novel beta-lactam antibiotic activates tumor cell apoptotic program by inducing DNA damage. Mol Pharmacol. 2002;61(6):1348-58. doi: 10.1124/mol.61.6.1348, PMID 12021396
59. Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C, et al. Investigation on the origin of sperm DNA fragmentation: Role of apoptosis, immaturity and oxidative stress. Mol Med. 2015;21(1):109- 22. doi: 10.2119/molmed.2014.00158, PMID 25786204
60. Wangngae S, Chansaenpak K, Nootem J, Ngivprom U, Aryamueang S, Lai RY, et al. Synthesis and evaluation of antimicrobial activities of selenium-containing heterocyclic compounds. Molecules. 2021;26(5):1-13. doi: 10.3390/molecules26051472
61. Araneda JF, Piers WE, Heyne B, Parvez M, McDonald R. Synthesis and characterization of New organoselenium compounds with potential biological activities. Angew Chem Int Ed. 2011;50(51):12214-7.
62. Durães F, Silva PM, Novais P, Amorim I, Gales L, Esteves CI, et al. Synthesis and biological evaluation of new selenium-containing compounds with antimicrobial properties. Molecules. 2021;26(1):1-13.
63. Govindaraj V, Ramanathan S. Synthesis and characterization of novel organic materials for optoelectronic applications. Turk J Chem. 2014;38(3):521-30.
64. Gao Z, Hao Y, Zheng M, Chen Y. Novel organoselenium compounds and their biological activities. RSC Adv. 2017;7:7604-9. doi: 10.1039/ c6ra27043d
Published
How to Cite
Issue
Section
Copyright (c) 2025 Zainab Kadhim Al-Khazragie

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.