ITRACONAZOLE-LOADED NANOEMBEDDED MICROPARTICLES FOR INHALATION THERAPY IN LUNG INFECTIONS: DESIGN AND OPTIMIZATION
DOI:
https://doi.org/10.22159/ajpcr.2025v18i10.55673Keywords:
Itraconazole, Nanoembedded microparticles, Nano crystallization, Quality by design, Inhalation, Pulmonary route, AspergillosisAbstract
Objective: To develop and optimize itraconazole (ICZ) nanoembedded microparticles (NMPs) for pulmonary delivery to enhance the treatment of aggressive pulmonary fungal infections, such as aspergillosis, in immunocompromised patients with chronic respiratory conditions by improving ICZ solubility, dissolution, and lung-specific drug delivery.
Methods: Itraconazole nanocrystals (INCs) were formulated using ultrasonic processing with Poloxamer-188 or Brij 58 as stabilizers to enhance solubility. Quality by Design (QbD) principles were applied to evaluate the effects of formulation and process variables on ICZ solubility and dissolution. Optimized INCs were lyophilized into NMPs using α-Lactose Monohydrate USP as a matrix, sifted to a particle size of <5 µm, and subjected to micromeritic and dissolution studies. The pharmacokinetic performance of NMPs was compared to commercially available oral ICZ formulations by assessing plasma drug concentrations.
Results: Optimized INCs, sonicated with Poloxamer-188 at 50% amplitude for 15 minutes, achieved a particle size of 174.4 nm, solubility of 0.31 mg/mL, and a dissolution time of 22.97 minutes to reach 90% of the dose. NMPs exhibited suitable properties for inhalation, disintegrating in the secondary bronchi to release INCs that rapidly penetrated alveolar fluids. Compared to oral formulations, NMPs showed a faster tmax, higher Cmax, and increased plasma ICZ bioavailability at equivalent doses, with significantly higher drug concentrations in the lungs and sustained effective levels.
Conclusion: ICZ-loaded NMPs for pulmonary delivery offer a promising approach for treating pulmonary fungal infections, providing enhanced solubility, rapid dissolution, and superior lung-targeted drug delivery compared to oral formulations, potentially improving therapeutic outcomes in vulnerable populations.
Downloads
References
1. Kanaujia R, Singh S, Rudramurthy SM. Aspergillosis: An update on clinical spectrum, diagnostic schemes, and management. Curr Fungal Infect Rep. 2023:1-12. doi: 10.1007/s12281-023-00461-5, PMID 37360858
2. Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks JD, et al. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol. 2021;100:100115. doi: 10.1016/j. simyco.2021.100115, PMID 34035866
3. Swaminathan S, Sangwai M, Wawdhane S, Vavia P. Soluble itraconazole in tablet form using disordered drug delivery approach: Critical scale-up considerations and bioequivalence studies. AAPS PharmSciTech. 2013;14(1):360-74. doi: 10.1208/s12249-012-9918-9, PMID 23334999
4. Abuhelwa AY, Foster DJ, Mudge S, Hayes D, Upton RN. Population pharmacokinetic modeling of itraconazole and hydroxyitraconazole for oral SUBA-itraconazole and sporanox capsule formulations in healthy subjects in fed and fasted states. Antimicrob Agents Chemother. 2015;59(9):5681-96. doi: 10.1128/AAC.00973-15, PMID 26149987
5. Darwich M, Mohylyuk V, Kolter K, Bodmeier R, Dashevskiy A. Enhancement of itraconazole solubility and release by hot-melt extrusion with soluplus®. J Drug Deliv Sci Technol. 2023;81:104280. doi: 10.1016/j.jddst.2023.104280
6. Lee JH, Park C, Weon KY, Kang CY, Lee BJ, Park JB. Improved bioavailability of poorly water-soluble drug by targeting increased absorption through solubility enhancement and precipitation inhibition. Pharmaceuticals (Basel). 2021;14(12):1255. doi: 10.3390/ph14121255, PMID 34959655
7. Devara R, Habibuddin M, Aukunuru J. Enhancement of dissolution rate of poorly soluble drug itraconazole by nanosuspension technology: Its preparation and evaluation studies. Asian J Pharm Clin Res. 2018;11(4):414-21. doi: 10.22159/ajpcr.2018.v11i4.19933
8. Newman SP. Drug delivery to the lungs: Challenges and opportunities. Ther Deliv. 2017;8(8):647-61. doi: 10.4155/tde-2017-0037, PMID 28730933
9. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588-99. doi: 10.1046/j.1365-2125.2003.01892.x, PMID 14616418
10. Patil JS, Sarasija S. Pulmonary drug delivery strategies: A concise, systematic review. Lung India. 2012;29(1):44-9. doi: 10.4103/0970- 2113.92361, PMID 22345913
11. Huang Z, Kłodzińska SN, Wan F, Nielsen HM. Nanoparticle-mediated pulmonary drug delivery: State of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections. Drug Deliv Transl Res. 2021;11(4):1634-54. doi: 10.1007/s13346-021-00954-1, PMID 33694082
12. Plaunt AJ, Nguyen TL, Corboz MR, Malinin VS, Cipolla DC. Strategies to overcome biological barriers associated with pulmonary drug delivery. Pharmaceutics. 2022;14(2):302. doi: 10.3390/ pharmaceutics14020302, PMID 35214039
13. Liang W, Pan HW, Vllasaliu D, Lam JK. Pulmonary delivery of biological drugs. Pharmaceutics. 2020;12(11):1025. doi: 10.3390/pharmaceutics12111025, PMID 33114726
14. Ruge CA, Kirch J, Lehr CM. Pulmonary drug delivery: From generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. Lancet Respir Med. 2013;1(5):402-13. doi: 10.1016/S2213-2600(13)70072-9, PMID 24429205
15. Geiser M. Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv. 2010;23(4):207-17. doi: 10.1089/jamp.2009.0797, PMID 20109124
16. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today. 2015;10(4):487-510. doi: 10.1016/j.nantod.2015.06.006, PMID 26640510
17. Kim S, Choi IH. Phagocytosis and endocytosis of silver nanoparticles induce interleukin-8 production in human macrophages. Yonsei Med J. 2012;53(3):654-7. doi: 10.3349/ymj.2012.53.3.654, PMID 22477013
18. Yue P, Zhou W, Huang G, Lei F, Chen Y, Ma Z, et al. Nanocrystals based pulmonary inhalation delivery system: Advance and challenge. Drug Deliv. 2022;29(1):637-51. doi: 10.1080/10717544.2022.2039809, PMID 35188021
19. Sabourian P, Yazdani G, Ashraf SS, Frounchi M, Mashayekhan S, Kiani S, et al. Effect of physico-chemical properties of nanoparticles on their intracellular uptake. Int J Mol Sci. 2020;21(21):8019. doi: 10.3390/ ijms21218019, PMID 33126533
20. Qie Y, Yuan H, Von Roemeling CA, Chen Y, Liu X, Shih KD, et al. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep. 2016;6:26269. doi: 10.1038/srep26269, PMID 27197045
21. Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater Today Commun. 2020;25:101692. doi: 10.1016/j.mtcomm.2020.101692
22. Brunet K, Martellosio JP, Tewes F, Marchand S, Rammaert B. Inhaled antifungal agents for treatment and prophylaxis of bronchopulmonary invasive mold infections. Pharmaceutics. 2022;14(3):641. doi: 10.3390/ pharmaceutics14030641, PMID 35336015
23. Demoly P, Hagedoorn P, De Boer AH, Frijlink HW. The clinical relevance of dry powder inhaler performance for drug delivery. Respir Med. 2014;108(8):1195-203. doi: 10.1016/j.rmed.2014.05.009, PMID 24929253
24. Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: A review. Int J Mol Sci. 2014;15(4):5852-73. doi: 10.3390/ijms15045852, PMID 24717409
25. Liu T, Han M, Tian F, Cun D, Rantanen J, Yang M. Budesonide nanocrystal-loaded hyaluronic acid microparticles for inhalation: In vitro and in vivo evaluation. Carbohydr Polym. 2018;181:1143-52. doi: 10.1016/j.carbpol.2017.11.018, PMID 29253943
26. Chakravarthy PS, Grandhi S, Swami R, Singh I. Quality by design based optimization and development of cyclodextrin inclusion complexes of quercetin for solubility enhancement. Biointerface Res Appl Chem. 2023;13(5):424. doi: 10.33263/briac135.424
27. Baldassarre F, Tatulli G, Vergaro V, Mariano S, Scala V, Nobile C, et al. Sonication-assisted production of fosetyl-al nanocrystals: Investigation of human toxicity and in vitro antibacterial efficacy against Xylella fastidiosa. Nanomaterials (Basel). 2020;10(6):1174. doi: 10.3390/ nano10061174, PMID 32560195
28. Haiss MA, Maraie NK. Utilization of ultrasonication technique for the preparation of apigenin nanocrystals. Int J Drug Deliv Technol. 2021;11:964-73.
29. Lucero-Borja D, Subirats X, Barbas R, Prohens R, Avdeef A, Ràfols C. Potentiometric CheqSol and standardized shake-flask solubility methods are complimentary tools in physicochemical profiling. Eur J Pharm Sci. 2020;148:105305. doi: 10.1016/j.ejps.2020.105305, PMID 32184154
30. Veseli A, Žakelj S, Kristl A. A review of methods for solubility determination in biopharmaceutical drug characterization. Drug Dev Ind Pharm. 2019;45(11):1717-24. doi: 10.1080/03639045.2019.1665062, PMID 31512934
31. Srikar G, Rani AP. Tenofovir loaded poly (lactide-co-glycolide) nanocapsules: Formulation optimization by desirability functions approach. Indian J Pharm Educ Res. 2020;54(2s):S230-40. doi: 10.5530/ ijper.54.2s.79
32. Srikar G, Rani AP. Study on influence of polymer and surfactant on in vitro performance of biodegradable aqueous-core nanocapsules of tenofovirdisoproxil fumarate by response surface methodology. Braz J Pharm Sci. 2019;55:e18736. doi: 10.1590/s2175-97902019000118736
33. Jia Z, Li J, Gao L, Yang D, Kanaev A. Dynamic light scattering: A powerful tool for in situ nanoparticle sizing. Colloids Interfaces. 2023;7(1):15. doi: 10.3390/colloids7010015
34. Bohr A, Water J, Beck-Broichsitter M, Yang M. Nanoembedded microparticles for stabilization and delivery of drug-loaded nanoparticles. Curr Pharm Des. 2015;21(40):5829-44. doi: 10.2174/1 381612821666151008124322, PMID 26446473
35. Mohammadpour F, Kamali H, Hadizadeh F, Bagheri M, Shiadeh SN, Nazari A, et al. The PLGA microspheres synthesized by a thermosensitive hydrogel emulsifier for sustained release of risperidone. J Pharm Innov. 2022;17(3):712-24. doi: 10.1007/s12247-021-09544-7
36. Janoszka N, Azhdari S, Hils C, Coban D, Schmalz H, Gröschel AH. Morphology and degradation of multicompartment microparticles based on semi-crystalline polystyrene-block-polybutadiene-block-poly(L-lactide) triblock terpolymers. Polymers (Basel). 2021;13(24):4358. doi: 10.3390/polym13244358, PMID 34960909
37. Maheshwari R, Todke P, Kuche K, Raval N, Tekade RK. Micromeritics in pharmaceutical product development. In: Tekade RK, editor. Dosage form design considerations. 1st ed. Cambridge: Academic Press; 2018. p. 599-635. doi: 10.1016/B978-0-12-814423-7.00017-4
38. Miyamoto K, Taga H, Akita T, Yamashita C. Simple method to measure the aerodynamic size distribution of porous particles generated on lyophilizate for dry powder inhalation. Pharmaceutics. 2020;12(10):976. doi: 10.3390/pharmaceutics12100976, PMID 33076510
39. Tansho S, Abe S, Ishibashi H, Torii S, Otani H, Ono Y, et al. Efficacy of intravenous itraconazole against invasive pulmonary aspergillosis in neutropenic mice. J Infect Chemother. 2006;12(6):355-62. doi: 10.1007/ s10156-006-0479-2, PMID 17235640
40. Kaur J, Muttil P, Verma RK, Kumar K, Yadav AB, Sharma R, et al. A hand-held apparatus for “nose-only” exposure of mice to inhalable microparticles as a dry powder inhalation targeting lung and airway macrophages. Eur J Pharm Sci. 2008;34(1):56-65. doi: 10.1016/j. ejps.2008.02.008, PMID 18387284
41. Compas D, Touw DJ, De Goede PN. Rapid method for the analysis of itraconazole and hydroxyitraconazole in serum by high-performance liquid chromatography. J Chromatogr B Biomed Appl. 1996;687(2):453-6. doi: 10.1016/s0378-4347(96)00245-9, PMID 9017471
42. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft excel. Comput Methods Programs Biomed. 2010;99(3):306-14. doi: 10.1016/j.cmpb.2010.01.007, PMID 20176408
43. Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020;24:3. doi: 10.1186/s40824-020- 0184-8, PMID 31969986
44. Gagliardi A, Voci S, Salvatici MC, Fresta M, Cosco D. Brij-stabilized zein nanoparticles as potential drug carriers. Colloids Surf B Biointerfaces. 2021;201:111647. doi: 10.1016/j.colsurfb.2021.111647, PMID 33639515
45. Lotfy NS, Borg TM, Mohamed EA. The promising role of chitosan- Poloxamer 188 nanocrystals in improving diosmin dissolution and therapeutic efficacy against ferrous sulfate-induced hepatic injury in rats. Pharmaceutics. 2021;13(12):2087. doi: 10.3390/ pharmaceutics13122087, PMID 34959367
46. Srikar G, Avula P, Annapurna S, Boola M. Development of extended release matrix tablets of felodipine through solid dispersions for better drug release profile by a 32 factorial design. Indian J Pharm Educ Res. 2016;50:S89-99.
47. Ruiz E, Orozco VH, Hoyos LM, Giraldo LF. Study of sonication parameters on PLA nanoparticles preparation by simple emulsion-evaporation solvent technique. Eur Polym J. 2022;173:111307. doi: 10.1016/j.eurpolymj.2022.111307
48. Zhang T, Li X, Xu J, Shao J, Ding M, Shi S. Preparation, characterization, and evaluation of breviscapine nanosuspension and its freeze-dried powder. Pharmaceutics. 2022;14(5):923. doi: 10.3390/ pharmaceutics14050923, PMID 35631508
49. Gigliobianco MR, Casadidio C, Censi R, Di Martino P. Nanocrystals of poorly soluble drugs: drug bioavailability and physicochemical stability. Pharmaceutics. 2018;10(3):134. doi: 10.3390/pharmaceutics10030134, PMID 30134537
50. Gulsun TU, Akdag YA, Izat N, Oner L. Sahin S. Effect of particle size and surfactant on the solubility, permeability and dissolution characteristics of deferasirox. J Res Pharm 2019;23:851-9.
51. Dos Santos AM, Meneguin AB, Fonseca-Santos B, Chaves de Souza MP, Barboza Ferreira LM, Sábio RM, et al. The role of stabilizers and mechanical processes on physico-chemical and anti-inflammatory properties of methotrexate nanosuspensions. J Drug Deliv Sci Technol. 2020;57:101638. doi: 10.1016/j.jddst.2020.101638
52. Smail SS, Ghareeb MM, Omer HK, Al-Kinani AA, Alany RG. Studies on surfactants, cosurfactants, and oils for prospective use in formulation of ketorolac tromethamine ophthalmic nanoemulsions. Pharmaceutics. 2021;13(4):467. doi: 10.3390/pharmaceutics13040467, PMID 33808316
53. Sandhya M, Ramasamy D, Sudhakar K, Kadirgama K, Harun WS. Ultrasonication an intensifying tool for preparation of stable nanofluids and study the time influence on distinct properties of graphene nanofluids - a systematic overview. Ultrason Sonochem. 2021;73:105479. doi: 10.1016/j.ultsonch.2021.105479, PMID 33578278
54. Bolourchian N, Shafiee Panah M. The effect of surfactant type and concentration on physicochemical properties of carvedilol solid dispersions prepared by wet milling method. Iran J Pharm Res. 2022;21(1):e126913. doi: 10.5812/ijpr-126913, PMID 36060905
55. Gaul R, Ramsey JM, Heise A, Cryan SA, Greene CM. Nanotechnology approaches to pulmonary drug delivery. In: Grumezescu AM, editor. Design of Nanostructures for Versatile Therapeutic Applications. 1st ed. New York: William Andrew Publishing; 2018. p. 221-53. doi: 10.1016/ B978-0-12-813667-6.00006-1
56. Chan HW, Chow S, Zhang X, Zhao Y, Tong HH, Chow SF. Inhalable nanoparticle-based dry powder formulations for respiratory diseases: Challenges and strategies for translational research. AAPS PharmSciTech. 2023;24(4):98. doi: 10.1208/s12249-023-02559-y, PMID 37016029
57. Hebbink GA, Jaspers M, Peters HJ, Dickhoff BH. Recent developments in lactose blend formulations for carrier-based dry powder inhalation. Adv Drug Deliv Rev. 2022;189:114527. doi: 10.1016/j. addr.2022.114527, PMID 36070848
58. Li M, Lopez N, Bilgili E. A study of the impact of polymer-surfactant in drug nanoparticle coated pharmatose composites on dissolution performance. Adv Powder Technol. 2016;27(4):1625-36. doi: 10.1016/j. apt.2016.05.026
59. Shin JH, Choi KY, Kim YC, Lee MG. Dose-dependent pharmacokinetics of itraconazole after intravenous or oral administration to rats: Intestinal first-pass effect. Antimicrob Agents Chemother. 2004;48(5):1756-62. doi: 10.1128/AAC.48.5.1756-1762.2004, PMID 15105131
60. Buil JB, Hagen F, Chowdhary A, Verweij PE, Meis JF. Itraconazole, voriconazole, and posaconazole CLSI MIC distributions for wild-type and azole-resistant Aspergillus fumigatus isolates. J Fungi (Basel). 2018;4(3):103. doi: 10.3390/jof4030103, PMID 30158470
Published
How to Cite
Issue
Section
Copyright (c) 2025 INDIRAMUZIB YALLAMALLI, Sreevidya Puvvala

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.