LC-MS/MS-BASED METABOLOMIC CHARACTERIZATION AND ANTIDIABETIC POTENTIAL OF ETHANOLIC EXTRACT OF THE IPOMOEA MOMBASSANA VATKE STEM
DOI:
https://doi.org/10.22159/ajpcr.2025v18i11.55737Keywords:
Antioxidant enzymes, Diabetes mellitus, High-Resolution Liquid Chromatography-Mass Spectrometry, Ipomoea mombassana Vatke stem, Metformin, StreptozotocinAbstract
Objectives: Ipomoea mombassana Vatke is a lesser-known species of the genus Ipomoea, with no prior reports on its phytochemical or pharmacological properties. This study investigated the phytochemical profile, enzyme inhibition, antioxidant activity, and antidiabetic potential of its stem extracts.
Methods: Stems were successively extracted with solvents of increasing polarity, and yields were determined. The ethanolic I. mombassana stem extract (IMSE) was selected for detailed evaluation. Phytochemical screening was performed, and in vitro α-amylase and α-glucosidase inhibition assays (100–500 μg/mL) were carried out. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis was conducted using an Agilent 1290 Infinity II LC system with 6550 iFunnel Q-TOF in positive electrospray ionization mode. In vivo activity was assessed in Streptozotocin-induced diabetic rats treated with IMSE (100 and 200 mg/kg) for 21 days, compared with normal, diabetic control (DC), and Metformin groups.
Results: IMSE exhibited strong α-amylase (IC50=45.78±0.18 μg/mL) and α-glucosidase inhibition (42.26±0.97 μg/mL) compared to acarbose (34.4±0.56 and 32.95±0.45 μg/mL, respectively). LC-MS/MS identified 42 compounds, including pilocarpine, maritimetin, and ganoderic acid F. In vivo, IMSE significantly reduced fasting blood glucose from 344±1.6 mg/dL in DCs to 198±2.1 mg/dL at 200 mg/kg (p<0.001). It also improved lipid profiles by lowering total cholesterol, triglycerides, and low-density lipoprotein cholesterol while elevating high-density lipoprotein cholesterol (p<0.01–0.001). Liver enzyme levels were normalized (serum glutamate oxaloacetate transaminase: 71±1.6→52±1.1 U/L; serum glutamate pyruvate transaminase: 87±2.2→55±1.5 U/L; p<0.001). Antioxidant markers were restored, including superoxide dismutase (1.3±0.03→5.4±0.30 U/mL) and glutathione (0.32±0.056 → 1.7±0.069 mg/dL; p<0.001).
Conclusion: The ethanolic extract of I. mombassana demonstrated significant enzyme inhibition and hypoglycemic effects, accompanied by improvements in lipid metabolism, hepatic function, and antioxidant defense, supporting its potential as a natural therapeutic for diabetes management.
Downloads
References
1. Verdcourt B. Convolvulaceae. In: Milne-Redhead E, Polhill RM, editors. Flora of tropical East Africa. London: Crown Publishing Group Agents for Overseas Governments and Administrations; 1963.
2. Biju SD, Vajravelu E, Sabu M. Ipomoea mombassana (Hallier f.) Verdc. (Convolvulaceae) - a new record for India from Kerala. J Econ Taxon Bot. 1998;22(3):711-2.
3. Pullaiah T. Flora of Telangana- The 29th state of India. New Delhi: Regency Publications; 2015.
4. Reddy KN, Reddy CS. Flora of Telangana State, India. Dehradun: Bishen Singh Mahendra Pal Singh; 2016.
5. Mascarenhas ME, Mandrekar CR, Marathe PB, Morais LJ. Phytochemical screening of selected species from Convolvulaceae. Int J Curr Pharm Res. 2017;9(6):94. doi: 10.22159/ijcpr.2017v9i6.23438
6. Paramesh L, Reddy VB. Ipomoea mombassana Vatke (Convolvulaceae) - new record to the flora of Telangana state, India. J Indian Bot Soc. 2020;100(3 and 4):200. doi: 10.5958/2455- 7218.2020.00034.0
7. Kalauni SK, Khanal LN, Thapa P, Kunwor K. Phytochemical screening, antioxidant, antibacterial, and α-amylase inhibitory activity of Moringa oleifera Lam. leaves. J Nepal Chem Soc. 2023;43(2):141-50. doi: 10.3126/jncs.v43i2.53360
8. McKinley B, Santiago M, Pak C, Nguyen N, Zhong Q. Acarbose and gastrointestinal side effectsmechanisms and tolerability. J Clin Med. 2022;11(20):6005.
9. StatPearls. Acarbose. Treasure Island, FL: StatPearls Publishing; 2024.
10. Ozaki S, Oe H, Kitamura S. Alpha-glucosidase inhibitor from Kothala-himbutu (Salacia reticulata). J Nat Prod. 2008;71(6):981-4. doi: 10.1021/np070604h, PMID 18547114
11. Nengovhela N, Steenkamp PA, Madala NE. LC-MS based metabolite fingerprinting of Coccinia plants reveals glycoisomerization as a structural diversification strategy in flavonoid chemical space. Natl Acad Sci Lett. 2021;44(3):209-13. doi: 10.1007/s40009-020-00990-4
12. Yuan J, Liu R, Sheng S, Fu H, Wang X. Untargeted LC-MS/MS-based metabolomic profiling for the edible and medicinal plant Salvia miltiorrhiza under different levels of cadmium stress. Front Plant Sci. 2022;13:889370. doi: 10.3389/fpls.2022.889370, PMID 35968141
13. Teoh WY, Yong YS, Razali FN, Stephenie S, Dawood Shah M, Tan JK, et al. LC-MS/MS and GC-MS analysis for the identification of bioactive metabolites responsible for the antioxidant and antibacterial activities of Lygodium microphyllum (Cav.) R. Br. Separations. 2023;10(3):215. doi: 10.3390/separations10030215
14. Donath MY. Targeting inflammation in the treatment of type 2 diabetes: Time to start. Nat Rev Drug Discov. 2014;13(6):465-76. doi: 10.1038/ nrd4275, PMID 24854413
15. Afroz A, Zhang W, Wei Loh AJ, Jie Lee DX, Billah B. Macro- and microvascular complications and their determinants among people with type 2 diabetes in Bangladesh. Diabetes Metab Syndr. 2019;13(5):2939-46. doi: 10.1016/j.dsx.2019.07.046, PMID 31425960
16. Svensson B. α-amylase: An enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci. 2013;70(9):1399- 410. doi: 10.1007/s00018-012-1142-0
17. Massaro JD, Polli CD, Silva MC, Alves CC, Passos GA, Sakamoto- Hojo ET, et al. Post-transcriptional markers associated with clinical complications in Type 1 and type 2 diabetes mellitus. Mol Cell Endocrinol. 2019;490:1-14. doi: 10.1016/j.mce.2019.03.008, PMID 30926524
18. Dehghan H, Sarrafi Y, Salehi P. Antioxidant and antidiabetic activities of 11 herbal plants from Hyrcania region, Iran. J Food Drug Anal. 2016;24(1):179-88. doi: 10.1016/j.jfda.2015.06.010, PMID 28911402
19. Han X, Yang Y, Metwaly AM, Xue Y, Shi Y, Dou D. The Chinese herbal formulae (Yitangkang) exerts an antidiabetic effect through the regulation of substance metabolism and energy metabolism in type 2 diabetic rats. J Ethnopharmacol. 2019;239:111942. doi: 10.1016/j. jep.2019.111942, PMID 31075380
20. Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334(9):574-9. doi: 10.1056/NEJM199602293340906, PMID 8569826
21. Harborne JB. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 3rd ed. London: Chapman and Hall; 1998. p. 60-6.
22. Ntchapda F, Tchatchouang FC, Miaffo D, Maidadi B, Vecchio L, Talla RE, et al. Hypolipidemic and Anti-Atherosclerogenic Effects of Aqueous Extract of Ipomoea batatas Leaves in Diet-Induced Hypercholesterolemic Rats. J Integr Med. 2021;19(3):243-50. doi: 10.1016/j.joim.2021.02.002, PMID 33775599
23. Arief Waskito B, Sargowo D, Kalsum U, Tjokroprawiro A. Anti-atherosclerotic activity of aqueous extract of Ipomoea batatas (L.) leaves in high-fat diet-induced atherosclerosis model rats. J Basic Clin Physiol Pharmacol. 2023;34(6):725-34. doi: 10.1515/jbcpp-2021-0080, PMID 34986543
24. Mourya P, Singh G, Jain N, Gupta MK. In-vitro studies on inhibition of alpha amylase and alpha glucosidase by plant extracts of Alternanthera pungens kunth. J Drug Deliv Ther. 2018;8(6-A):64-8.
25. Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI. Inhibitory effect of pine bark and needle extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition. 2005;21(6):756-61. doi: 10.1016/j. nut.2004.10.014, PMID 15925302
26. SAIF IITB. Facilities and Instrumentation. Sophisticated Analytical Instrument Facility, Indian Institute of Technology Bombay. Available from: https://www.ircc.iitb.ac.in/saif/facilities.html
27. Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013;21(2):143-52. doi: 10.1016/j.jsps.2012.05.002, PMID 24936134.
28. Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc. 2021;1(4):e78. doi: 10.1002/cpz1.78, PMID 33905609
29. Zhang B, Deng Z, Tang Y, Chen PX, Liu R, Ramdath DD, et al. Inhibition mechanism of diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) against α-amylase and α-glucosidase. Food Chem. 2021;348:129165. doi: 10.1016/j.foodchem.2021.129165
30. Shawky E, Sobhy AA, Ghareeb DA, Shams Eldin SM, Selim DA. Comparative metabolomics analysis of bioactive constituents of the leaves of different Trigonella species: Correlation study to α-amylase and α-glucosidase inhibitory effects. Ind Crops Prod. 2022;182:114947. doi: 10.1016/j.indcrop.2022.114947
31. Heisler EV, Osmarim Turra B, Cardoso de Afonso Bonotto N, Da Cruz IB, Aurélio Echart Montano M, Farina Azzolin V, et al. The modulatory effect of an ethanolic extract of Anredera cordifolia (Ten.) on the proliferation and migration of hyperglycemic fibroblasts in an in vitro diabetic wound model. Oxid Med Cell Longev. 2024;2024:2812290. doi: 10.1155/2024/2812290, PMID 39411276
32. Kumar BD, Mitra A, Manjunatha M. A comparative study of alpha-amylase inhibitory activities of common antidiabetic plants of Kharagpur 1 block. Int J Green Pharm. 2010;4:115-21.
33. Sharma R, Satyanarayana P, Anand P, Kumar S. Circulating serum adiponectin and oxidative stress biomarkers in prediabetes and type 2 diabetes mellitus patients. Asian J Pharm Clin Res. 2019;12(12):58-60. 34. Shen H, Wang J, Ao J, Hou Y, Xi M, Cai Y, et al. Structure-activity relationships and the underlying mechanism of α-amylase inhibition by hyperoside and quercetin: Multi-spectroscopy and molecular docking analyses. Spectrochim Acta A Mol Biomol Spectrosc. 2023;285:121797. doi: 10.1016/j.saa.2022.121797, PMID 36115306
35. Liu J, Shimizu K, Konishi F, Kumamoto S, Kondo R. The anti-androgen effect of triterpenoids from Ganoderma lucidum. Bioorg Med Chem. 2007;15(14):4966-72. doi: 10.1016/j.bmc.2007.04.050
36. Subramaniyam S, Sabariappan R, Narayanasamy A, Umapathy V, Arumugam S, Kathirvel M. LC-MS/MS-based metabolite profiling and anti-allergic activity of Xenostegia tridentata. Sci Rep. 2022;12(1):6254. doi: 10.1038/s41598-022-10318-y
37. Abou-Zeid AM, Elgamal AM, El-Gendy AO, Elshamy AI, Abd- ElGawad AM. Profiling of antimicrobial and cytotoxic secondary metabolites from Aspergillus sp. using LC-MS/MS and GC-MS. Antibiotics. 2021;10(5):524. doi: 10.3390/antibiotics10050524
38. Cushnie TP, Cushnie B, Lamb AJ. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents. 2014;44(5):377-86. doi: 10.1016/j. ijantimicag.2014.06.001, PMID 25130096
39. MedChemExpress. Ganoderic Acid F. Available from: https://www. medchemexpress.com/ganoderic-acid-f.html [Last accessed on 2025 May 20].
40. Chen X, Fang M. Oxidative stress mediated mitochondrial damage plays roles in pathogenesis of diabetic nephropathy rat. Eur Rev Med Pharmacol Sci. 2018;22(16):5248-54. doi: 10.26355/ eurrev_201808_15723, PMID 30178848
41. Zhong Y, Fan H, Zhang R, Wang H, Zhang W, Tian T. Associations between HbA1c variability index and risk of chronic complications of diabetes mellitus. Chin Gen Pract. 2019;23(3):276-88.
42. Khan RA, Khan MR, Sahreen S, Ahmed M. Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens. Chem Cent J. 2012;6(1):43. doi: 10.1186/1752-153X-6-43, PMID 22616896
43. Rao GM, Morghom LO, Kabur MN, Ben Mohmud BM, Ashibani K. Serum glutamic oxaloacetic transaminase (GOT) and glutamic pyruvate transaminase (GPT) levels in diabetes mellitus. Indian J Med Sci. 1989;43(5):118-21. PMID 2793214
Published
How to Cite
Issue
Section
Copyright (c) 2025 Lakshmi Rajita Kotta

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.