PROTECTIVE MODULATORY POTENTIAL OF AZOLLA PINNATA EXTRACT ON LIPID METABOLISM, HEPATIC DYSFUNCTIONING, ALONG WITH MITIGATION OF OXIDATIVE STRESS IN TRITON X-100 INDUCED HYPERLIPIDEMIC RATS
DOI:
https://doi.org/10.22159/ajpcr.2025v18i10.55783Keywords:
Azolla pinnata, Hyperlipidemia, Triton X-100, Lipid profile, Oxidative stress, Antioxidant activityAbstract
Objective: The objective of the study was to investigate the hypolipidemic and antioxidant effects of ethanolic extract of Azolla pinnata (EEAP) in Triton X-100-induced hyperlipidemic rats.
Methods: Hyperlipidemia was induced in male Wistar rats (n=6/group) by intraperitoneal injection of Triton X-100 (100 mg/kg). Animals were divided into five groups: normal control, Triton control, EEAP 125 mg/kg, EEAP 250 mg/kg, and atorvastatin 10 mg/kg. EEAP was prepared by Soxhlet extraction (yield: 17.2%) and screened for phytochemicals. Antioxidant potential was evaluated using 1,2-diphenyl-2-picryl-hydroxyl radical (DPPH) and nitric oxide scavenging assays. After 7 days of treatment, serum lipid profile, liver and kidney function markers (alanine aminotransferase, aspartate aminotransferase, bilirubin, creatinine, blood urea nitrogen), oxidative stress markers (thiobarbituric acid-reactive substances [TBARS], malondialdehyde [MDA], glutathione [GSH]), and liver histology were analyzed. Data were statistically analyzed using Analysis of Variance followed by Tukey’s multiple comparison test.
Results: EEAP showed moderate antioxidant activity (DPPH IC50=379.17 μg/mL, and NO IC50=113.9314 μg/mL) and significantly improved lipid profile by lowering triglyceride (136.18±1.04), total cholesterol (117.18±1.20), low-density lipoprotein (139.12±2.10), and very low-density lipoprotein (48.94±1.20), ***p<0.001 while increasing high-density lipoprotein (33.28±1.10 mg/dL; ***p<0.001). It normalized hepatic markers and reduced TBARS and MDA, with increased GSH. Liver histology showed improved architecture, especially at 250 mg/kg.
Conclusion: A. pinnata, a flavonoid and phenolic-rich aquatic fern, remains insufficiently studied for its potential in hyperlipidemia and oxidative stress management. EEAP exerted significant lipid-lowering and antioxidant effects in hyperlipidemic rats, indicating its potential as a natural therapeutic agent for hyperlipidemia and oxidative stress.
Downloads
References
1. Abbasi S, Khan A, Choudhry MW. New insights into the treatment of hyperlipidemia: Pharmacological updates and emerging treatments. Cureus. 2024;16(6):e63078. doi: 10.7759/cureus.63078, PMID 38919858
2. Karr S. Epidemiology and management of hyperlipidemia. Am J Manag Care. 2017;23(9 Suppl):S139-48. PMID 28978219
3. World Health Organization. Noncommunicable Diseases: Risk Factors. The Global Health Observatory; 2023. Available from: https://www. who.int/data/gho/data/themes/topics/topic-details/gho/ncd-risk-factors
4. Pirillo A, Casula M, Olmastroni E, Norata GD, Catapano AL. Global epidemiology of dyslipidaemias. Nat Rev Cardiol. 2021;18(10):689- 700. doi: 10.1038/s41569-021-00541-4, PMID 33833450
5. Parwin A, Najmi AK, Ismail MV, Kaundal M, Akhtar M. Protective effects of alendronate in Triton X-100-induced hyperlipidemia in rats. Turk J Gastroenterol. 2019;30(6):557-64. doi: 10.5152/tjg.2019.18076, PMID 31144662
6. Saleem U, Riaz S, Ahmad B, Saleem M. Pharmacological screening of Trachyspermum ammi for antihyperlipidemic activity in Triton X-100 induced hyperlipidemia rat model. Pharmacogn Res. 2017;9 Suppl 1:S34-40. doi: 10.4103/pr.pr_37_17, PMID 29333040
7. Mouradov A, Spangenberg G. Flavonoids: A metabolic network mediating plants adaptation to their real estate. Front Plant Sci. 2014;5:620. doi: 10.3389/fpls.2014.00620, PMID 25426130
8. Debette S, Courbon D, Leone N, Gariépy J, Tzourio C, Dartigues JF, et al. Tea consumption is inversely associated with carotid plaques in women. Arterioscler Thromb Vasc Biol. 2008;28(2):353-9. doi: 10.1161/ATVBAHA.107.151928, PMID 18063810
9. Zeka K, Ruparelia K, Arroo RR, Budriesi R, Micucci M. Flavonoids and their metabolites: Prevention in cardiovascular diseases and diabetes. Diseases. 2017 Sep 5;5(3):19. doi: 10.3390/diseases5030019, PMID 32962323
10. Islam B, Sharma C, Adem A, Aburawi E, Ojha S. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking. Drug Des Dev Ther. 2015 Aug 28;9:4943-51. doi: 10.2147/ DDDT.S86705, PMID 26357462
11. Dower JI, Geleijnse JM, Gijsbers L, Schalkwijk C, Kromhout D, Hollman PC. Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre)hypertensive adults: A randomized double-blind, placebo-controlled, crossover trial. J Nutr. 2015;145(7):1459-63. doi: 10.3945/jn.115.211888, PMID 25972527
12. Aviram M, Dornfeld L, Rosenblat M, Volkova N, Kaplan M, Coleman R, et al. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: Studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr. 2000;71(5):1062-76. doi: 10.1093/ajcn/71.5.1062, PMID 10799367
13. Selvi KV, Aruna S, Rajeshkumar S. Analysis of bioactive metabolites from Azolla pinnata against dental caries. Res J Pharm Technol. 2017;10(6):1891-6. doi: 10.5958/0974-360X.2017.00332.8
14. Mahdavi A, Bagherniya M, Fakheran O, Reiner Ž, Xu S, Sahebkar A. Medicinal plants and bioactive natural compounds as inhibitors of HMG-CoA reductase: A literature review. Biofactors. 2020 Nov;46(6):906-26. doi: 10.1002/biof.1684, PMID 33053603
15. Sharma S, Sharma D, Dhobi M, Wang D, Tewari D. An insight to treat cardiovascular diseases through phytochemicals targeting PPAR-α. Mol Cell Biochem. 2024 Mar;479(3):707-32. doi: 10.1007/s11010- 023-04755-7, PMID 37171724
16. Khare V, Kushwaha P, Verma S, Gupta A, Srivastava S, Rawat AK. Pharmacognostic evaluation and antioxidant activity of Urtica dioica L. China Med. 2012;3(3):128-35. doi: 10.4236/cm.2012.33021
17. Gami B, Parabia MH. Pharmacognostic evaluation of bark and seeds of Mimusops elengi L. Int J Pharm Pharm Sci. 2010;2 Suppl 4:110-3.
18. kaushik ML, Goutam N, Ashawat MS. Anti-nephrolithiasis activity of ethanol extract of Ipomoea carnea jacq. Against ethylene glycol-induced urolithiasis in rats. Asian J Pharm Clin Res. 2025 May 7;18(5):96-104. doi: 10.22159/ajpcr.2025v1815.54311
19. Mukherjee PK. Quality Control and Evaluation of Herbal Drugs: Evaluating Natural Products and Traditional Medicine. Elsevier; 2019 May 30. Available from: https://shop.elsevier.com/books/quality/ control/and/evaluation/of/herbal/drugs/mukherjee/978/0/12/813374/3
20. Jagetia GC, Baliga MS. The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: A preliminary study. J Med Food. 2004;7(3):343-8. doi: 10.1089/jmf.2004.7.343, PMID 15383230
21. Jayachandra K, Maheswaran A, Murali M. In-vitro evaluation of nitric oxide scavenging activity of methanolic and aqueous extract of Syzygium cumini Linn. Bark (Myrtaceae). Int J Pharm Sci Res. 2012 Feb 1;3(2):615. doi: 10.13040/IJPSR.0975-8232.3(2).615-19
22. Ballesteros-Ramírez R, Lasso P, Urueña C, Saturno J, Fiorentino S. Assessment of acute and chronic toxicity in Wistar rats (Rattus norvegicus) and New Zealand rabbits (Oryctolagus cuniculus) of an enriched polyphenol extract obtained from Caesalpinia spinosa. J Toxicol. 2024;2024:3769933. doi: 10.1155/2024/3769933, PMID 38633362
23. Jerine PS, Sanjay V, Muruganandham L, Sabina EP. Identifying the potential activity of Azolla pinnata through in vitro assay and SEM. Songklanakarin J Sci Technol. 2021;43(5):1305-11. doi: 10.14456/sjst-psu.2021.170
24. Penumarthy S, Penmetsa GS, Mannem S. Assessment of serum levels of triglycerides, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol in periodontitis patients. J Indian Soc Periodontol. 2013;17(1):30-5. doi: 10.4103/0972-124X.107471, PMID 23633769
25. Sahu S, Chawla R, Uppal B. Comparison of two methods of estimation of low-density lipoprotein cholesterol, the direct versus Friedewald estimation. Indian J Clin Biochem. 2005;20(2):54-61. doi: 10.1007/ BF02867401, PMID 23105534
26. Borges LP, Brandão R, Godoi B, Nogueira CW, Zeni G. Oral administration of diphenyl diselenide protects against cadmium-induced liver damage in rats. Chem Biol Interact. 2008;171(1):15-25. doi: 10.1016/j.cbi.2007.09.005, PMID 17950719
27. Chukwudoruo CS, Osuji-Kalu-Ibe NC, Igwe KO, Iheme CI, Ujowundu FN, Mba BA. Serum total protein concentration and liver enzymes activities in albino rats model administered with ethanolic leaf extract of Ficus capensis. Afr J Biotechnol. 2021;20(4):164-8. doi: 10.5897/AJB2020.17107
28. Alum EU, Umoru GU, Uti DE, Aja PM, Ugwu OP, Orji OU, et al. Hepato-protective effect of ethanol leaf extract of Datura stramonium in alloxan-induced diabetic albino rats. J Chem Soc Niger. 2022;47(5):1165-76. doi: 10.46602/jcsn.v47i5.819
29. Chargui I, Grissa I, Bensassi F, Hrira MY, Haouem S, Haouas Z, et al. Oxidative stress, biochemical and histopathological alterations in the liver and kidney of female rats exposed to low doses of deltamethrin (DM): A molecular assessment. Biomed Environ Sci. 2012;25(6):672- 83. doi: 10.3967/0895-3988.2012.06.009, PMID 23228837
30. Olatosin TM, Akinduko DS, Uche CZ. Evaluation of the hepatoprotective efficacy of Moringa oleifera seed oil on CCl₄-induced liver damage in Wistar albino rats. Int J Eng Sci. 2013;2(11):13-8.
31. Friday OA, Eke MO. Inclusive diet of Balanites aegyptiaca Del defatted protein meal and protein concentrate on organ weight and diabetic conditioned liver of Wister albino rat. Bangladesh J Food Nutr. 2024;1(1):13-25. doi: 10.70945/bjfn.2024.v01i01.06
32. Mithraja MJ, Marimuthu JM, Mahesh M, Paul ZM, Jeeva S. Phytochemical studies on Azolla pinnata R. Br., Marsilea minuta L. and Salvinia molesta Mitch. Asian Pac J Trop Biomed. 2011;1(1):S26- 9. doi: 10.1016/S2221-1691(11)60116-0
33. Inamdar S, Ahmad M, Tazneem B, Hashmi S, Kulkarni B, Aldhabi BM, et al. Molecular docking analysis of Ficus religiosa L. Fruit extracts with HMG-CoA reductase inhibitors, anti-hyperlipidemic effects of its in Albino Wistar rats, triggered by Triton-X 100 and high fat diet. Bioact Carbohydr Diet Fibre. 2024 Dec 1;32:100429. doi: 10.1016/j. bcdf.2024.100429
34. Elrasoul MA, Nour Eldeen GN, Arafa MH. Azolla pinnata ethanolic extract alleviates lead-induced hepatotoxicity via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms in rats. Environ Sci Pollut Res. 2020;27(12):13356-66. doi: 10.1007/s11356-020-07955-6
35. Nawaz AS, Junaid S, Dileep N, Rakesh KN, Kekuda TR. Antioxidant activity of Azolla pinnata and Azolla rubra - a comparative study. Scholars Acad J Biosci. 2014;2(10):719-23. doi: 10.36347/sabj.2014.v02i10.013
36. Livingston Raja NR, Ravindran Nair A, Senthilpandian S, Ravi V. Hypolipidemic action of rutin on triton WR-1339 induced hyperlipidemia in rats. J Pre Clin Clin Res. 2021;15(2):51-5. doi: 10.26444/jpccr/136231
37. Abd Elrasoul AS, Mousa AA, Orabi SH, Mohamed MA, Gad-Allah SM, Almeer R, et al. Ameliorative effect of Azolla pinnata ethanolic extract on ranitidine-induced hepatotoxicity in rats. J Curr Vet Res. 2020;2(2):21-9. doi: 10.21608/jcvr.2020.121532
38. Nawaz N, Rahman MU, Ahmad N, Mehmood A. Comparative study of in vitro antioxidant and cytotoxic activities of Azolla pinnata and Azolla rubra. Asian Pac J Trop Biomed. 2014;4(2):115-21. doi: 10.1016/ S2221-1691(14)60219-3
39. Thiripurasundari CJ, Padmini E. Evaluation of phytochemicals and antioxidant potential of Azolla pinnata R. Br Res J Pharm Technol. 2018;11(8):3370-4. doi: 10.5958/0974-360X.2018.00620.2
40. Elrasoul AS, Mousa AA, Orabi SH, Mohamed MA, Gad-Allah SM, Almeer R, et al. Antioxidant, anti-inflammatory, and anti-apoptotic effects of Azolla pinnata ethanolic extract against lead-induced hepatotoxicity in rats. Antioxidants (Basel). 2020;9(10):1014. doi: 10.3390/antiox9101014, PMID 33086604
41. Santhakumar AB, Battino M, Alvarez-Suarez JM. Dietary polyphenols: Structures, bioavailability and protective effects against atherosclerosis. Food Chem Toxicol. 2018;113:49-65. doi: 10.1016/j.fct.2018.01.022, PMID 29360556
42. Stanely Mainzen Prince P, Kannan NK. Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in streptozotocin-induced diabetic rats. J Pharm Pharmacol. 2006;58(10):1373-83. doi: 10.1211/jpp.58.10.0011, PMID 17034661
43. Obilineni I, Latha JD, Srikala K, Asha G, Amulya M, Rajani V. Evaluation of antihyperlipidemic activity of leaves of Cassia tora. Res J Pharm Technol. 2022;15(2):741-4. doi: 10.52711/0974- 360X.2022.00123
44. Awasthi VK, Mahdi F, Chander R, Khanna AK, Saxena JK, Singh R, et al. Hypolipidemic activity of Cassia tora seeds in hyperlipidemic rats. Indian J Clin Biochem. 2015;30(1):78-83. doi: 10.1007/s12291- 013-0412-2, PMID 25646045
45. Bhuvana K, Sridharan D, Gnanapragasam A. Antihyperlipidemic activity of Boerhavia diffusa L. In Triton WR 1339 induced hyperlipidemia in rats. Asian J Pharm Clin Res. 2018;11(9):272-5. doi: 10.22159/ajpcr.2018.v11i9.26714
46. Ccs V, Devi SG. Antihyperlipidemic property of Boerhavia diffusa leaf extract in streptozotocin-induced diabetic rats. Asian J Pharm Clin Res. 2018;11(4):173-6. doi: 10.22159/ajpcr.2018.v11i4.23226
47. Althaher AR, Alwahsh M, Hasan A, Al-Majali D, Awadallah MW, Al-Qirim T. Anti-hyperlipidemic effect of Ruta chalepensis ethanolic extract in Triton WR-1339-induced hyperlipidemia in rats. Appl Sci. 2024;14(19):9017. doi: 10.3390/app14199017
48. Yehia YA, Greish SS, Kamel MS, Abd EL-Rahman AS, Ahmed YM, Gaber MM. Potential role of A. Pinnata in mitigating abamectin-induced hepatorenal toxicity and oxidative stress in Nile tilapia, (Oreochromis niloticus). J Appl Plant Protect. 2024;13(1):29-38. doi: 10.21608/japp.2024.329067.1015
49. Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, et al. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Res Int. 2022;2022(1):5445291. doi: 10.1155/2022/5445291, PMID 35707379
50. Sun W, Shahrajabian MH. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules. 2023 Feb 15;28(4):1845. doi: 10.3390/molecules28041845, PMID 36838831
51. Ahmed QA, Mahmood GJ. Comparison of the effect of Moringa extract and the drug atorvastatin in alleviating histological and physiological disorders in the aorta and liver caused by hyperlipidemia in male rats. Obstet Gynaecol Forum. 2024;34(3s):2296-307
52. Aborhyem S, Ismail H, Agamy N, Tayel D. Effect of Moringa oleifera on lipid profile in rats. J High Inst Public Health. 2016;46(1):8-14. doi: 10.21608/jhiph.2016.20201
53. Langhi C, Vallier M, Bron A, Otero YF, Maura M, Le Joubioux F, et al. A polyphenol-rich plant extract prevents hypercholesterolemia and modulates gut microbiota in western diet-fed mice. Front Cardiovasc Med. 2024;11:1342388. doi: 10.3389/fcvm.2024.1342388, PMID 38317864
54. Abdou HM, Yousef MI, Newairy AA, Triton WR. DNA fragmentation, neurotransmitters inhibition, oxidative damage, histopathological and morphometric changes: The protective role of soybean oil. J Basic Appl Zool. 2018;79:51. doi: 10.1186/s41936-018-0065-z
Published
How to Cite
Issue
Section
Copyright (c) 2025 Shavinder Kumari, MADAN L. KAUSHIK, MAHENDRA SINGH ASHAWAT

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.