ANTI-LEISHMANIAL EFFECTIVENESS OF MILTEFOSINE-LOADED MESOPORUS ZINC OXIDE NANOPARTICLES IN MACROPHASES OF RAW 264.7 CELL LINES: AN IN-VITRO EVALUATION
DOI:
https://doi.org/10.22159/ajpcr.2025v18i10.55839Keywords:
Visceral leishmaniasis, Miltefosine-loaded nanoparticles, Mesoporous zinc oxide, RAW 264.7 macrophages, Anti-leishmanial activityAbstract
Objective: Visceral leishmaniasis (VL) is a deadly parasitic disease lacking safe and effective treatments. This study investigated the anti-leishmanial efficacy of a novel compound, MF-MZONPs, in vitro using the murine macrophage RAW 264.7 cell line.
Method: RAW 264.7 cells were cultivated and exposed to Leishmania donovani promastigotes with or without MF-MZONPs treatment, and a battery of assays was performed. Cell viability was assessed by MTT assay, parasite growth by microscopy and trypan blue exclusion, and cellular effects by nuclear staining (DAPI) and ethidium bromide–acridine orange (EtBr-AO) dual staining. A scratch wound assay evaluated the impact on cell migration, and reactive oxygen species (ROS) generation in promastigotes was measured.
Results: MF-MZONPs was non-toxic to macrophages at concentrations up to 10%, while significantly impairing L. donovani promastigote viability. Treated macrophages showed preserved nuclear integrity and reduced apoptosis/necrosis compared to infected cells without treatment. MF-MZONPS also mitigated parasite-induced inhibition of wound healing in macrophages and induced a marked increase in ROS within promastigotes.
Conclusions: The compound MF-MZONPS demonstrated potent anti leishmanial activity in vitro, killing parasites and protecting host macrophages. These findings suggest MF-MZONPS as a promising candidate for VL therapy, warranting further evaluation in animal models to confirm efficacy and safety in vivo.
Downloads
References
1. World Health Organization. Leishmaniasis. Geneva: World Health Organization. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis [Last accessed on 2025 Jun 29 ]
2. Actor JK. Parasitology. In: Actor JK, editor. Elsevier’s Integrated Review Immunology and Microbiology. 2nd ed. Philadelphia, PA: W.B. Saunders; 2012. p. 147-55. doi: 10.1016/B978-0-323-07447-6.00016-8
3. Mann S, Frasca K, Scherrer S, Henao-Martínez AF, Newman S, Ramanan P, et al. A review of leishmaniasis: Current knowledge and future directions. Curr Trop Med Rep. 2021;8(2):121-32. doi: 10.1007/ s40475-021-00232-7, PMID 33747716
4. Gurjar D, Kumar Patra S, Bodhale N, Lenka N, Saha B. Leishmania intercepts IFN-γR signaling at multiple levels in macrophages. Cytokine. 2022 Sep;157:155956. doi: 10.1016/j.cyto.2022.155956, PMID 35785668
5. Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The pathogenicity and virulence of Leishmania - interplay of virulence factors with host defenses. Virulence. 2022 Dec;13(1):903-35. doi: 10.1080/21505594.2022.2074130, PMID 35531875
6. Seaman J, Mercer AJ, Sondorp E. The epidemic of visceral leishmaniasis in western Upper Nile, southern Sudan: Course and impact from 1984 to 1994. Int J Epidemiol. 1996 Aug;25(4):862-71. doi: 10.1093/ ije/25.4.862, PMID 8921468
7. Frézard F, Demicheli C, Ribeiro RR. Pentavalent antimonials: New perspectives for old drugs. Molecules. 2009;14(7):2317-36. doi: 10.3390/molecules14072317, PMID 19633606
8. Kaye PM, Mohan S, Mantel C, Malhame M, Revill P, Le Rutte E, et al. Overcoming roadblocks in the development of vaccines for leishmaniasis. Expert Rev Vaccines. 2021 Nov;20(11):1419-30. doi: 10.1080/14760584.2021.1990043, PMID 34727814, PMCID PMC9844205
9. Zhang H, Yan R, Liu Y, Yu M, He Z, Xiao J, et al. Progress in antileishmanial drugs: Mechanisms, challenges, and prospects. PLoS Negl Trop Dis. 2025 Jan 3;19(1):e0012735. doi: 10.1371/journal. pntd.0012735, PMID 39752369
10. Shrestha NK. Sodium stibogluconate. Clin Infect Dis. 2006 Nov 15;43(10):1371-2. doi: 10.1086/508659, PMID 17051510
11. Brioschi MB, Coser EM, Coelho AC, Gadelha FR, Miguel DC. Models for cytotoxicity screening of antileishmanial drugs: What has been done so far? Int J Antimicrob Agents. 2022 Aug;60(2):106612. doi: 10.1016/j.ijantimicag.2022.106612, PMID 35691601
12. Kurniawan DW, Aini Gumilas NS, Hartati S, Tarwadi, Arramel, Novrial D. Preparation, characterization, and toxicity study of Andrographis paniculata ethanol extract poly-lactic-CO-glycolic acid (PLGA) nanoparticles in RAW 264.7 cells. Int J Appl Pharm. 2024;16(4):78-83. doi: 10.22159/Ijap.2024v16i4.50798
13. Zheng ZW, Li J, Chen H, He JL, Chen QW, Zhang JH, et al. Evaluation of in vitro antileishmanial efficacy of cyclosporin A and its non-immunosuppressive derivative, dihydrocyclosporin A. Parasit Vectors. 2020 Feb 21;13(1):94. doi: 10.1186/s13071-020-3958-x, PMID 32085719
14. Want MY, Yadav P, Khan R, Chouhan G, Islamuddin M, Aloyouni SY, et al. Critical antileishmanial in vitro effects of highly examined gold nanoparticles. Int J Nanomedicine. 2021 Oct 28;16:7285-95. doi: 10.2147/IJN.S268548, PMID 34737566
15. Dewi IP, Aldi Y, Ismail NH, Hefni D, Susanti M, Syafri S, et al. Curcuma aeruginosa Roxb. extract inhibits the production of proinflammatory cytokines on raw 264.7 macrophages. Int J Appl Pharm. 2024;16(1):41-4. doi: 10.22159/Ijap.2024.V16s1.08
16. Ruhland A, Leal N, Kima PE. Leishmania promastigotes activate PI3K/ Akt signalling to confer host cell resistance to apoptosis. Cell Microbiol. 2007 Jan;9(1):84-96. doi: 10.1111/j.1462-5822.2006.00769.x, PMID 16889626
17. Joo T, Sowndhararajan K, Hong S, Lee J, Park SY, Kim S, et al. Inhibition of nitric oxide production in LPS-stimulated RAW 264.7 cells by stem bark of Ulmus pumila L. Saudi J Biol Sci. 2014 Nov;21(5):427-35. doi: 10.1016/j.sjbs.2014.04.003, PMID 25313277
18. De Souza GL, Moura CC, Silva AC, Marinho JZ, Silva TR, Dantas NO, et al. Effects of zinc oxide and calcium-doped zinc oxide nanocrystals on cytotoxicity and reactive oxygen species production in different cell culture models. Restor Dent Endod. 2020 Oct 19;45(4):e54. doi: 10.5395/rde.2020.45.e54, PMID 33294419
19. Chazotte B. Labeling nuclear DNA using DAPI. Cold Spring Harb Protoc. 2011;2011(1):pdb.prot5556. doi: 10.1101/pdb.prot5556, PMID 21205856
20. Maney V, Singh M. An in vitro assessment of novel chitosan/ bimetallic PtAu nanocomposites as delivery vehicles for doxorubicin. Nanomedicine (Lond). 2017 Nov;12(21):2625-40. doi: 10.2217/nnm- 2017-0228, PMID 28965478
21. Han B, Dai Y, Wu H, Zhang Y, Wan L, Zhao J, et al. Cimifugin inhibits inflammatory responses of RAW264.7 cells induced by lipopolysaccharide. Med Sci Monit. 2019 Jan 14;25:409-17. doi: 10.12659/MSM.912042, PMID 30638197
22. Asgharpour F, Moghadamnia AA, Motallebnejad M, Nouri HR. Propolis attenuates lipopolysaccharide-induced inflammatory responses through intracellular ROS and NO levels along with downregulation of IL-1β and IL-6 expressions in murine RAW 264.7 macrophages. J Food Biochem. 2019 Aug;43(8):e12926. doi: 10.1111/jfbc.12926, PMID 31368546
23. Das BK, Verma SK, Das T, Panda PK, Parashar K, Suar M, et al. Altered electrical properties with controlled copper doping in ZnO nanoparticles infers their cytotoxicity in macrophages by ROS induction and apoptosis. Chem Biol Interact. 2019 Jan 5;297:141-54. doi: 10.1016/j.cbi.2018.11.004, PMID 30419219
24. Al-Shehaby N, Elshoky HA, Zidan M, Salaheldin TA, Gaber MH, Ali MA, et al. In vitro localization of modified zinc oxide nanoparticles showing selective anticancer effects against colorectal carcinoma using biophysical techniques. Sci Rep. 2025;15(1):16811. doi: 10.1038/ s41598-025-00434-3, PMID 40369004
25. Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, et al. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomedicine. 2017;12:1621-37. doi: 10.2147/IJN. S124403, PMID 28280330
26. Sun Y, Chen D, Pan Y, Qu W, Hao H, Wang X, et al. Nanoparticles for antiparasitic drug delivery. Drug Deliv. 2019 Dec;26(1):1206-21. doi: 10.1080/10717544.2019.1692968, PMID 31746243
27. Tiwari R, Gupta RP, Singh VK, Kumar A, Rajneesh MP, Madhukar P, et al. Nanotechnology-based strategies in parasitic disease management: From prevention to diagnosis and treatment. ACS Omega. 2023 Nov 1;8(45):42014-27. doi: 10.1021/acsomega.3c04587, PMID 38024747
28. Allahverdiyev AM, Abamor ES, Bagirova M, Ustundag C, Kaya C, Kaya F, et al. Antileishmanial activity of titanium dioxide nanoparticles and their enhanced antiparasitic effect under ultraviolet light. Int J Nanomedicine. 2013;8:3161-70.
29. Majeed QA, Shater AF, Alanazi AD. Green synthesis, characterization, and antileishmanial activity of the silver nanoparticles alone and along with Meglumine Antimoniate against Leishmania major infection. Iran J Parasitol. 2023 Oct-Dec;18(4):535-45. doi: 10.18502/ijpa. v18i4.14262, PMID 38169555
30. Srivastav S, Basu Ball W, Gupta P, Giri J, Ukil A, Das PK. Leishmania donovani prevents oxidative burst-mediated apoptosis of host macrophages through selective induction of suppressors of cytokine signaling (SOCS) proteins. J Biol Chem. 2014 Jan 10;289(2): 1092-105. doi: 10.1074/jbc.M113.496323, PMID 24275663
31. Allahverdiyev AM, Abamor ES, Bagirova M, Ustundag CB, Kaya C, Kaya F, et al. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int J Nanomedicine. 2011;6:2705-14. doi: 10.2147/IJN.S23883, PMID 22114501
32. Espuelas S, Legrand P, Loiseau PM, Bories C, Barratt G, Alunda JM, et al. In vitro antileishmanial activity of amphotericin B loaded in poly(epsilon-caprolactone) nanospheres. J Drug Target. 2002;10(5): 379-86.
33. Phumee A, Jariyapan N, Chusri S, Hortiwakul T, Mouri O, Gay F, et al. Determination of anti-leishmanialdrugs efficacy against Leishmania martiniquensis using a colorimetric assay. Parasite Epidemiol Control. 2020 Feb 19;9:e00143. doi: 10.1016/j.parepi.2020. e00143, PMID 32300665
34. Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006 Jan;19(1):111-26. doi: 10.1128/CMR.19.1.111- 126.2006, PMID 16418526
Published
How to Cite
Issue
Section
Copyright (c) 2025 Anirbandeep Bose

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.