DESIGN, CHARACTERIZATION, AND EVALUATION OF CURCUMIN NANOSPONGES LOADED INTRAVAGINAL HYDROGEL FOR THE TREATMENT OF ENDOMETRIOSIS
DOI:
https://doi.org/10.22159/ajpcr.2025v18i10.55911Keywords:
Curcumin, Nanosponges, Hydrogel, Optimization, EndometriosisAbstract
Objective: This work aimed to optimize the process parameters for curcumin (CUR)-loaded nanosponges (NSs) and evaluating the prepared NSs hydrogel for the treatment of vaginal endometriosis.
Methods: The independent factors of CUR-loaded β-Cyclodextrin (β-CD) NSs production were optimized using Box-Behnken Design (BBD). CUR-βCDNSs were synthesized using lyophilization with carbonyldiimidazole as a cross-linking agent, and then formed into a hydrogel by the cold method. Experimental runs from a three-factor, three-level BBD were used in these studies. Results: The mean particle size was 76.78–154.56 nm, and encapsulation effectiveness was 76.62–86.68%. FTIR, DSC, and XRD showed CUR-NSs inclusion complex development. TEM revealed CUR in the polymer core. In vitro release tests showed NSs released 85% CUR in 120 minutes. Positive photostability and simulated intestinal fluid testing. Free-CUR, CUR-βCDNSs, and ascorbic acid demonstrated antioxidant activity in vitro with SC50 values of 536.44, 187.48, and 81.16 μg/mL, respectively. This hydrogel's viscosity ranged from 6358 to 6879 cps, and its strength varied with temperature. The mucoadhesive strength was 1356.78–1487.29 N/m2. In vitro, simulated fluid released 90% CUR in 60 min against 53% in citrate buffer. CUR-βCDNSs hydrogel demonstrated consistent CUR release in simulated vaginal fluid. Poloxamer-based CUR-βCDNSs hydrogels in situ gelling enhances bioavailability by forming a gel at higher temperatures and slowly releasing CUR.
Conclusion: The research recommended that CUR-βCDNSs hydrogel can be a good and efficient alternative for the treatment of endometriosis.
Downloads
References
1. Pawar S, Shende P, Trotta F. Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int J Pharm. 2019;565:333- 50. doi: 10.1016/j.ijpharm.2019.05.015, PMID 31082468
2. Selvamuthukumar S, Anandam S, Krishnamoorthy K, Rajappan M. Nanosponges: A novel class of drug delivery system-review. J Pharm Pharm Sci. 2012;15(1):103-11. doi: 10.18433/j3k308, PMID 22365092
3. Muralikrishna P, Babu AK, Mamatha P. Formulation and optimization of ceritinib loaded nanobubbles by Box-Behnken design. Int J App Pharm. 2022 Apr;14(4):219-26. doi: 10.22159/ijap.2022v14i4.44388
4. Konda M, Sampathi S. QbD approach for the development of capsaicin-loaded stearic acid-grafted chitosan polymeric micelles. Int J App Pharm. 2023 Apr;15(4):131-42. doi: 10.22159/ijap.2023v15i4.48101
5. Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm. 2013 Sep;63(3):335-58. doi: 10.2478/acph-2013-0021, PMID 24152895
6. Venuti V, Rossi B, Mele A, Melone L, Punta C, Majolino D, et al. Tuning structural parameters for the optimization of drug delivery performance of cyclodextrin-based nanosponges. Expert Opin Drug Deliv. 2017 Mar;14(3):331-40. doi: 10.1080/17425247.2016.1215301, PMID 27449474
7. Vij M, Dand N, Kumar L, Wadhwa P, Wani SU, Mahdi WA, et al. Optimisation of a greener-approach for the synthesis of cyclodextrin-based nanosponges for the solubility enhancement of domperidone, a BCS Class II drug. Pharmaceuticals (Basel). 2023 Apr 10;16(4):567. doi: 10.3390/ph16040567, PMID 37111324
8. Atchaya J, Girigoswami A, Girigoswami K. Versatile applications of nanosponges in biomedical field: A glimpse on SARS-CoV-2 management. Bionanoscience. 2022;12(3):1018-31. doi: 10.1007/ s12668-022-01000-1, PMID 35755139
9. Chary SS, Bhikshapathi DV, Vamsi NM, Kumar JP. Optimizing entrectinib nanosuspension: Quality by design for enhanced oral bioavailability and minimized fast-fed variability. Bionanoscicnce. 2024;14(4):4551-69. doi: 10.1007/s12668-024-01462-5
10. Aparna A, Kumar YS, Bhikshapathi DV. Formulation and in vivo evaluation of ticagrelor self-nanoemulsifying drug delivery systems. Pharm Nanotechnol. 2021;9(1):61-9. doi: 10.2174/221173850866620 0708150151, PMID 32640972
11. Ji X, Li Z, Wang M, Yuan Z, Jin L. Response surface methodology approach to optimize parameters for coagulation process using polyaluminum chloride (PAC). Water. 2024;16(11):1470. doi: 10.3390/ w16111470
12. Singireddy A, Rani Pedireddi SR, Nimmagadda S, Subramanian S. Beneficial effects of microwave-assisted heating versus conventional heating in synthesis of cyclodextrin-based nanosponges. Mater Today Proc. 2016;3(10):3951-9. doi: 10.1016/j.matpr.2016.11.055
13. Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem. 2012;8:2091-9. doi: 10.3762/ bjoc.8.235, PMID 23243470
14. Kalam MA. Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. Int J Biol Macromol. 2016;89:127-36. doi: 10.1016/j.ijbiomac.2016.04.070, PMID 27126165
15. Gao W, Zhang Y, Zhang Q, Zhang L. Nanoparticle-hydrogel: A hybrid biomaterial system for localized drug delivery. Ann Biomed Eng. 2016;44(6):2049-61. doi: 10.1007/s10439-016-1583-9, PMID 26951462
16. Moin A, Roohi NK, Rizvi SM, Ashraf SA, Siddiqui AJ, Patel M, et al. Design and formulation of polymeric nanosponge tablets with enhanced solubility for combination therapy. RSC Adv. 2020;10(57):34869-84. doi: 10.1039/d0ra06611g, PMID 35514416
17. Zhang Y, Sun Y, Yang X, Hilborn J, Heerschap A, Ossipov DA. Injectable in situ forming hybrid iron oxide-hyaluronic acid hydrogel for magnetic resonance imaging and drug delivery. Macromol Biosci. 2014;14(9):1249-59. doi: 10.1002/mabi.201400117, PMID 24863175
18. Bitar R, Cools P, De Geyter N, Morent R. Acrylic acid plasma polymerization for biomedical use. Appl Surf Sci. 2018;448:168-85. doi: 10.1016/j.apsusc.2018.04.129
19. Tietz K, Klein S. Simulated genital tract fluids and their applicability in drug release/dissolution testing of vaginal dosage forms. Dissolution Technol. 2018;25(3):40-51. doi: 10.14227/dt250318p40
20. Abushammala IM, Mohammed Mqat B, Mohammed Hamdan A. Effect of curcumin at various doses on the pharmacokinetic profile of tacrolimus in healthy rabbits. Iraqi J Pharm Sci. 2022;31(1):246-50. doi: 10.31351/vol31iss1pp246-250
21. Fonseca-Santos B, Gremião MP, Chorilli M. A simple reversed phase high-performance liquid chromatography (HPLC) method for determination of in situ gelling curcumin-loaded liquid crystals in in vitro performance tests. Arab J Chem. 2017;10(7):1029-37. doi: 10.1016/j.arabjc.2016.01.014
22. Burns KA, Pearson AM, Slack JL, Por ED, Scribner AN, Eti NA, et al. Endometriosis in the mouse: Challenges and progress toward a ‘best fit’ murine model. Front Physiol. 2021;12:806574. doi: 10.3389/ fphys.2021.806574, PMID 35095566
23. Hossain S, Islam A, Tasnim F, Hossen F, E-Zahan K, Asraf A. Antimicrobial, antioxidant and cytotoxicity study of Cu(II), Zn(II), Ni(II), and Zr(IV) complexes containing O, N donor Schiff base ligand. Int J Chem Res. 2024 Oct;8(4):1-11. doi: 10.22159/ijcr.2024v8i4.231
24. Mashaqbeh H, Obaidat R, Al-Shar’I N. Evaluation and characterization of curcumin-β-cyclodextrin and cyclodextrin-based nanosponge inclusion complexation. Polymers (Basel). 2021;13(23):4073. doi: 10.3390/polym13234073, PMID 34883577
25. Chary SS, Bhikshapathi DV, Rajesham VV, Penakalapati SR, Sandhya P, Sadasivam RK. Formulation and evaluation of nano formulation of BTK inhibitor by Box-Behnken design and high-pressure homogenization for enhanced bioavailability and reducing the effects of food. Int J App Pharm. 2025;17(4):521-8. doi: 10.22159/ijap.2025v17i4.54079
26. Phalak SD, Bodke V, Yadav R, Pandav S, Ranaware M. A systematic review on nano drug delivery system: Solid lipid nanoparticles (SLN). Int J Curr Pharm Res. 2024 Jan;16(1):10-20. doi: 10.22159/ ijcpr.2024v16i1.4020
27. Bayer IS. Controlled drug release from nanoengineered polysaccharides. Pharmaceutics. 2023;15(5):1364. doi: 10.3390/ pharmaceutics15051364, PMID 37242606
28. Biswas J, Sinha D, Mukherjee S, Roy S, Siddiqi M, Roy M. Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal. Hum Exp Toxicol. 2010;29(6):513-24. doi: 10.1177/0960327109359020, PMID 20056736
29. Pedireddi S, Singireddy A, Varma MM, Jayanthi VR. Differential properties of nanoporousnanosponges prepared from β-cyclodextrin and 2-hydroxypropyl β-cyclodextrin. Adv Sci Eng Med. 2019;11(9):823- 35. doi: 10.1166/asem.2019.2423
30. Gharakhloo M, Sadjadi S, Rezaeetabar M, Askari F, Rahimi A. Cyclodextrin-based nanosponges for improving solubility and sustainable release of curcumin. ChemistrySelect. 2020;5(5):1734-8. doi: 10.1002/slct.201904007
31. Garg A, Lai WC, Chopra H, Agrawal R, Singh T, Chaudhary R, et al. Nanosponge: A promising and intriguing strategy in medical and pharmaceutical science. Heliyon. 2024;10(1):e23303. doi: 10.1016/j. heliyon.2023.e23303, PMID 38163139
32. Chandana L, Bhikshapathi D. Free radical scavenging activity of Pleurotus ostreatus against CCL4-induced hepatic damage in Wistar rats. Int J Pharm Pharm Sci. 2023 Dec;15(12):17-22. doi: 10.22159/ ijpps.2023v15i12.49478
33. Möller K, Macaulay B, Bein T. Curcumin encapsulated in crosslinked cyclodextrin nanoparticles enables immediate inhibition of cell growth and efficient killing of cancer cells. Nanomaterials (Basel). 2021;11(2):489. doi: 10.3390/nano11020489, PMID 33672006
34. Chandana L, Bhikshapathi DV. Ethnopharmacological investigation of Pleurotus ostreatus for anti-oxidative and anti-inflammatory activity in experimental animals. Asian J Pharm Clin Res. 2024 Apr;17(4):37-41. doi: 10.22159/ajpcr.2024.v17i4.49533
35. Jiang L, Xia N, Wang F, Xie C, Ye R, Tang H, et al. Preparation and characterization of curcumin/β-cyclodextrin nanoparticles by nanoprecipitation to improve the stability and bioavailability of curcumin. LWT. 2022;171:114149. doi: 10.1016/j.lwt.2022.114149
36. Zhang W, He Y, Chu Y, Zhai Y, Qian S, Wang X, et al. Amorphous curcumin-based hydrogels to reduce the incidence of post-surgical intrauterine adhesions. Regen Biomater. 2024;11:rbae043. doi: 10.1093/rb/rbae043, PMID 38779348
Published
How to Cite
Issue
Section
Copyright (c) 2025 Abhini Ummangal Balan, Bhavna Kumar, Gurusamy Mariappan

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.