IN-VITRO IN VITRO ANGIOTENSIN-CONVERTING ENZYME INHIBITORY ACTIVITY OF ETHYLACETATE FRACTION OF ASPIDOPTERYS INDICA: PHYTOCHEMICAL PROFILING INTEGRATED BY HIGHRESOLUTION LIQUID CHROMATOGRAPHY MASS SPECTROSCOPY AND IN SILICO APPROACH
DOI:
https://doi.org/10.22159/ajpcr.2025v18i11.56236Keywords:
Aspidopterys indica, Ethyl acetate fraction, HR-LCMS, ACE inhibition, in-vitro, in-silicoAbstract
Objective: Ethyl acetate fraction of the endemic drug Aspidopterys indica (EAAI) was screened for its in vitro angiotensin-converting enzyme (ACE) inhibitory potential. High-resolution liquid chromatography mass spectroscopy high-resolution liquid chromatography mass spectroscopy (HR-LCMS) was used to identify the biologically active metabolites. It was subjected to an in silico docking approach to recognize their molecular-level interactions with the ACE.
Methods: Methanol extract was prepared using ultrasonic extraction and fractionated with ethyl acetate by vacuum liquid chromatography. ACE inhibition was tested in vitro by the Cushman-Chung method. Phytochemical profiling of the active fraction was analyzed by HR-LCMS. In addition, in silico molecular docking of identified compounds was performed by AutoDock Vina (PyRx 0.8) to assess the binding affinity to the ACE enzyme.
Results: The ethyl acetate fractionated residue from the methanol extract of A. indica was tested for ACE inhibition; the IC50 of EAAI was 117.59 μg/mL, and positive control captopril was 81.56 μg/mL. After comprehensive HR-LCMS analysis, a broad range of 26 remarkable metabolites were identified, including four terpenoids, three flavonoids, three glycosides, two alkaloids, two long-chain amino alcohols, three phenolic acids, one phenolic compound, and two proteins. A glycoside (beta-D-gentiobiosyl crocetin-8.6 kcal), and a flavonoid maritimetin had (−7.8 kcal) demonstrated high binding affinities for 1O86 in a docking study. The findings revealed that EAAI manifested significant ACE inhibition, though less potent than captopril. In silico studies revealed that beta-D-gentiobiosyl crocetin had a binding affinity notably similar to captopril.
Conclusion: The ACE inhibition of phytochemicals offers its usage in antihypertensive medications. The present study highlights the substantial potential of A. indica as an ACE inhibitor; it can provide further insights into the research of bioactive components that may align with antihypertensive action.
Downloads
References
1. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020 Apr 16;16(4):223-37. doi: 10.1038/s41581- 019-0244-2, PMID 32024986
2. Griendling KK, Camargo LL, Rios FJ, Alves-Lopes R, Montezano AC, Touyz RM. Oxidative stress and hypertension. Circ Res. 2021 Apr 2;128(7):993-1020. doi: 10.1161/CIRCRESAHA.121.318063, PMID 33793335
3. Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical renin-angiotensin system in kidney physiology. Compr Physiol. 2014 Jul 4;4(3):1201-28. doi: 10.1002/cphy.c130040, PMID 24944035
4. Li J, Wei W, Ma X, Ji J, Ling X, Xu Z, et al. Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats. Food Funct. 2025 Mar 3;16(5):1731-59. doi: 10.1039/d4fo04251d, PMID 39752320
5. Patel N, Pal S, Arkatkar A, Prajapati C, Soni A, Sharma P. Evaluation of antihypertensive activity andmolecular docking analysis of Padina boergesenii extract. Bioorg Chem. 2024 Feb 14;143:107099. doi: 10.1016/j.bioorg.2024.107099, PMID 38190798
6. Rahman MM, Islam MR, Akash S, Mim SA, Rahaman MS, Emran TB, et al. In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective. Front Cell Infect Microbiol. 2022 Aug 22;12:929430. doi: 10.3389/fcimb.2022.929430, PMID 36072227
7. Ko SC, Kim JY, Lee JM, Yim MJ, Kim HS, Oh GW, et al. Angiotensin I-converting enzyme (ACE) inhibition and molecular docking study of meroterpenoids isolated from Brown Alga, Sargassum macrocarpum. Int J Mol Sci. 2023 Oct 14;24(13):11065. doi: 10.3390/ijms241311065, PMID 37446242
8. Khare CP. Glossary of Indian Medicinal Plants. New Delhi: Springer; 2007. p. 70.
9. Udaya CP, Sunitha K. Isolation, Characterisation and in-vitro antioxidant activities of flavonoid compounds from methanolic fraction of Aspidopterys indica. Int J Pharm Qual Assur. 2023 Dec 25;14(4):1027-32. doi: 10.25258/ijpqa.14.4.32
10. Pulla UC, Sunitha K. Effect of methanol fraction of Aspidopterys indica aerial parts on DOCA salt-induced hypertension and HR-LC-MS assisted phytochemical profiling. TJNPR. 2024 May 30;8(5):7154-60. doi: 10.26538/tjnpr/v8i5.16
11. Martins VF, Coelho M, Machado M, Costa E, Gomes AM, Poças F, et al. Integrated valorization of Fucus spiralis Alga: Polysaccharides and bioactives for edible films and residues as biostimulants. Foods. 2024 Sep 17;13(18):2938. doi: 10.3390/foods13182938, PMID 39335867
12. Anil N, Talluri VR. Phytochemical analysis of selected Indian medicinal plants by HR-MS spectra method. Rasayan J Chem. 2021 May 1;14(4):2318-26. doi: 10.31788/rjc.2021.1446473
13. Nallapaty S, Malothu N, Konidala SK, Areti AR, Guntupalli C. HR-LCMS metabolite profiling and in silico evaluation of the antidiabetic activity of methanolic leaf extract of Chrozophora rottleri (Geiseler) A. Juss. Ex Spreng. Indian J Pharm Educ Res. 2024 Jan 30;58(4):1277-86. doi: 10.5530/ijper.58.4.140
14. Tian Z, Liu F, Li D, Fernie AR, Chen W. Strategies for structure elucidation of small molecules based on LC-MS/MS data from complex biological samples. Comput Struct Biotechnol J. 2022 Sep 7;20:5085-97. doi: 10.1016/j.csbj.2022.09.004, PMID 36187931
15. Chen M, Wu J, Luo Q, Mo S, Lyu Y, Wei Y, et al. The anticancer properties of herba epimedii and its main bioactive componentsicariin and icariside II. Nutrients. 2016 Sep 13;8(9):563. doi: 10.3390/ nu8090563, PMID 27649234
16. Kumar DS, Deivasigamani K, Roy B. Development and optimization of phytosome for enhancement of therapeutic potential of epiyangambin in Tinospora cordifolia extract identified by GC-MS and docking analysis. Pharmacogn Mag. 2023 Nov 22;19(2):371-84. doi: 10.1177/09731296231157192
17. Lopez-Sublet M, Caratti di Lanzacco L, Danser AH, Lambert M, Elourimi G, Persu A. Focus on increased serum angiotensin-converting enzyme level: From granulomatous diseases to genetic mutations. Clin Biochem. 2018 Sep 18;59:1-8. doi: 10.1016/j.clinbiochem.2018.06.010, PMID 29928904
18. Tong T, Wang YN, Zhang CM, Kang SG. In vitro and in vivo antihypertensive and antioxidant activities of fermented roots of Allium hookeri. Chin Herb Med. 2021 Oct 30;13(4):541-8. doi: 10.1016/j. chmed.2021.08.003, PMID 36119359
19. Al Shukor N, Van Camp J, Gonzales GB, Staljanssens D, Struijs K, Zotti MJ, et al. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: A study of structure activity relationships. J Agric Food Chem. 2013 Dec 4;61(48):11832-9. doi: 10.1021/ jf404641v, PMID 24219111
20. Guerrero L, Castillo J, Quiñones M, Garcia-Vallvé S, Arola L,
Pujadas G, et al. Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies. PLoS One. 2012 Nov 21;7(11):e49493. doi: 10.1371/journal.pone.0049493, PMID 23185345
21. Ganga RM, Prem PG, Suvarchala RN. Antihypertensive effect of Rutin: Pharmacological and computational approach. Asian J Pharm Clin Res. 2019 Jun 14;12(8):87-92. doi: 10.22159/ajpcr.2019.v12i18.34118
22. Riaz H, Raza SA, Aslam MS, Ahmad MS, Ahmad MA, Maria P. An updated review of pharmacological, standardization methods and formulation development of Rutin. J Pure Appl Microbiol. 2018;12(1):127-32. doi: 10.22207/JPAM.12.1.16
23. Wang G, Wang Y, Yao L, Gu W, Zhao S, Shen Z, et al. Pharmacological activity of quercetin: An updated review. Evid Based Complement Alternat Med. 2022 Dec 1;2022:3997190. doi: 10.1155/2022/3997190, PMID 36506811
24. Serban MC, Sahebkar A, Zanchetti A, Mikhailidis DP, Howard G, Antal D, et al. Effects of quercetin on blood pressure: A systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2016 Jul 12;5(7):e002713. doi: 10.1161/JAHA.115.002713, PMID 27405810
25. Nenadis N, Sigalas MP. A DFT study on the radical scavenging activity of Maritimetin and related aurones. J Phys Chem A. 2008 Nov 27;112(47):12196-202. doi: 10.1021/jp8058905, PMID 18983134
26. Aijaz M, Keserwani N, Yusuf M, Ansari NH, Ushal R, Kalia P. Chemical, biological, and pharmacological prospects of caffeic acid. Biointerface Res Appl Chem. 2022;13(4):1-26. doi: 10.33263/briac134.324
27. Silva H, Lopes NM. Cardiovascular effects of caffeic acid and its derivatives: A comprehensive review. Front Physiol. 2020 Nov 27;11:595516. doi: 10.3389/fphys.2020.595516, PMID 33343392
28. Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci. 2019 Mar 22;22(3):225- 37. doi: 10.22038/ijbms.2019.32806.7897, PMID 31156781
29. Akbari G. Molecular mechanisms underlying gallic acid effects against cardiovascular diseases: An update review. Avicenna J Phytomed. 2020 Feb 10;10(1):11-23. doi: 10.3390/ijms26094188, PMID 31921604
30. Almatroodi SA, Rahmani AH. Unlocking the pharmacological potential of myricetin against various pathogenesis. Int J Mol Sci. 2025 Apr 25;26(9):4188. doi: 10.3390/ijms26094188, PMID 40362425
31. Mir MA, Ganai SA, Mansoor S, Jan S, Mani P, Masoodi KZ, et al. Isolation, purification, and characterization of naturally derived crocetin beta-d-glucosyl ester from Crocus sativus L. against breast cancer and its binding chemistry with ER-alpha/HDAC2. Saudi J Biol Sci. 2020 Mar 27;27(3):975-84. doi: 10.1016/j.sjbs.2020.01.018, PMID 32127777
32. Garg SS, Gupta J, Sharma S, Sahu D. An insight into the therapeutic applications of coumarin compounds and their mechanisms of action. Eur J Pharm Sci. 2020 Sep 1;152:105424. doi: 10.1016/j. ejps.2020.105424, PMID 32534193
33. Tamuli S, Kakati S, Das S, Singh KD, Ghosh SK. Comparative studies of efficacy and effects on oxidative stress of amlodipine and Ramipril in the hypertensive patients of North East India. Int J Pharm Pharm Sci. 2015 Dec 12;7(12):118-21.
34. Zhao ZJ, Sun YL, Ruan XF. Bornyl acetate: A promising agent in phytomedicine for inflammation and immune modulation. Phytomedicine. 2023 Jun 1;114:154781. doi: 10.1016/j. phymed.2023.154781, PMID 37028250
35. Maaliki D, Shaito AA, Pintus G, El-Yazbi A, Eid AH. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr Opin Pharmacol. 2019 Apr 25;45:57-65. doi: 10.1016/j.coph.2019.04.014, PMID 31102958
36. Baba H, Bunu SJ. Spectroscopic and molecular docking analysis of phytoconstituent isolated from Solenostemon monostachyus as potential cyclooxygenase enzymes inhibitor. Int J Chem Res. 2025 Jan 5;9(1):1-6. doi: 10.22159/ijcr.2025v9i1.241
37. Yu M, Kim HJ, Heo H, Kim M, Jeon Y, Lee H, et al. Comparison of the antihypertensive activity of phenolic acids. Molecules. 2022;27:6185. doi: 10.1002/fsn3.4014
38. Siddiqui T, Khan MU, Sharma V, Gupta K. Terpenoids in essential oils: Chemistry, classification, and potential impact on human health and industry. Phytomed Plus. 2024 May 22;4(2):100549. doi: 10.1016/j. phyplu.2024.100549
39. Omkar T, Jyoturam AS, Namdeo J. Networking pharmacology and molecular docking based exploration of Rubiaceous plants for breast cance: Phytochemicals, preclinical studies, and regulatory prospectives. Asian J Pharm Clin Res. 2025 Jul 22;18(7):52-71. doi: 10.22159/ ajpcr.2025v18i7.54934
40. Astian R, Sadikin M, Eff A, Firdyani SF. Insilico Identification testing of triterpene saponins on Centella asiatica on Inhibitor renin activity antihypertensive. Int J Appl Pharm. 2025 Jul 7;14(2):1-4. doi: 10.22159/ ijap.2022.v14s2.44737
41. Mehra R, Aanchal KS, Kalsi SP, Gautam SP. Hypertension in relation to immune system and way of life along with treatment. Int J Curr Pharm Sci. 2021 Nov 21;13(6):1-10. doi: 10.22159/ijcpr.2021v13i6.1907
42. Larson AJ, Symons JD, Jalili T. Quercetin: A treatment for hypertension?-A review of efficacy and mechanisms. Pharmaceuticals (Basel). 2010 Jan 19;3(1):237-50. doi: 10.3390/ph3010237, PMID 27713250
43. Paensuwan P, Khotcharrat R, Thongsuk W, Luangsawang K. In vitro comparative effects of biosimilar and reference bevacizumab on oxidative stress, inflammation, and cytotoxicity in retinal pigment epithelial cells. Int J Appl Pharm. 2025;17(5):139-45. doi: 10.22159/ ijap.2025v17i5.54738
44. Mancini A, Serrano-Díaz J, Nava E, D’Alessandro AM, Alonso GL, Carmona M, et al. Crocetin, a carotenoid derived from saffron (Crocus sativus L.), improves acetylcholine-induced vascular relaxation in hypertension. J Vasc Res. 2014;51(5):393-404. doi: 10.1159/000368930, PMID 25531977
45. Oyagbemi AA, Bolaji-Alabi FB, Ajibade TO, Adejumobi OA, Ajani OS, Jarikre TA, et al. Novel antihypertensive action of rutin is mediated via inhibition of angiotensin converting enzyme/mineralocorticoid receptor/angiotensin 2 type 1 receptor (ATR1) signaling pathways in uninephrectomized hypertensive rats. J Food Biochem. 2020 Dec;44(12):e13534. doi: 10.1111/jfbc.13534, PMID 33089540
46. Shahidi F. Phenolic-protein interactions: Insight from in-silico analyses. Food Prod Process Nutr. 2023;5(1):21. doi: 10.1186/s43014- 022-00121-0
47. Wang W, Chen W, Yang Y, Liu T, Yang H, Xin Z. New phenolic compounds from Coreopsis tinctoria Nutt. and their antioxidant and angiotensin I-converting enzyme inhibitory activities. J Agric Food Chem. 2015 Jan 14;63(1):200-7. doi: 10.1021/jf504289g, PMID 25516207
48. Muhammad SA, Fatima N. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides. Pharmacogn Mag. 2015 May;11 Suppl 1:S123-6. doi: 10.4103/0973-1296.157712, PMID 26109757
49. Abourashed EA. Bioavailability of plant-derived antioxidants. Antioxidants (Basel). 2013 Nov 5;2(4):309-25. doi: 10.3390/ antiox2040309, PMID 26784467
50. Salam U, Ullah S, Tang ZH, Elateeq AA, Khan Y, Khan J, et al. Plant metabolomics: An overview of the role of primary and secondary metabolites against different Environmental stress factors. Life (Basel). 2023 Mar 6;13(3):706. doi: 10.3390/life13030706, PMID 36983860
Published
How to Cite
Issue
Section
Copyright (c) 2025 Udaya Chandrika P

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.