BIOMEDICAL APPLICATION OF SELENIUM NANOPARTICLES SYNTHESIZED USING LINUM USITATISSIMUM AND WITHANIA SOMNIFERA HERBAL FORMULATION

Authors

  • SURIYA M Department of Biochemistry, Theivanai Ammal College for Women (Autonomous), Affiliated to Annamalai University, Villupuram, Tamil Nadu, India
  • KALAIMATHI J Department of Biochemistry, Theivanai Ammal College for Women (Autonomous), Affiliated to Annamalai University, Villupuram, Tamil Nadu, India
  • REVATHI S Department of Biochemistry, Theivanai Ammal College for Women (Autonomous), Affiliated to Annamalai University, Villupuram, Tamil Nadu, India https://orcid.org/0000-0003-0093-0614
  • DEENA MOL J Department of Biochemistry, Theivanai Ammal College for Women (Autonomous), Affiliated to Annamalai University, Villupuram, Tamil Nadu, India. https://orcid.org/0009-0001-7667-922X
  • KARTHIKA R Department of Biochemistry, Theivanai Ammal College for Women (Autonomous), Affiliated to Annamalai University, Villupuram, Tamil Nadu, India. https://orcid.org/0009-0008-9218-6346
  • RAJESHKUMAR S Department of Anatomy, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
  • SURESH K Department of Biotechnology and Biochemistry, Annamalai University, Chennai, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i12.56260

Keywords:

Selenium nanoparticles, Linum usitatissimum, Withania somnifera, Green synthesis, Biomedical applications

Abstract

Objectives: This study aimed to synthesize and characterize selenium nanoparticles (SeNPs) using phytochemical-rich extracts of Linum usitatissimum (flaxseed) and Withania somnifera (ashwagandha), and to evaluate their biological efficacy and safety for biomedical applications.

Methods: SeNPs were synthesized through a green method employing aqueous extracts of flaxseed and ashwagandha as reducing and stabilizing agents. Characterization was performed using ultraviolet (UV)-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy to determine morphology, crystallinity, and functional groups. Biological activities were assessed through antioxidant assays (2,2-diphenyl-1-picrylhydrazyl, Ferric reducing antioxidant power, ABTS), anti-inflammatory tests (bovine serum albumin and egg albumin denaturation), and antimicrobial evaluations (agar well-diffusion and time-kill assay). Cytotoxicity and embryonic toxicology were analyzed using brine shrimp lethality and zebrafish embryo viability assays.

Results: The UV-visible spectra confirmed nanoparticle formation with a characteristic peak at 270–280 nm. XRD and TEM analyses revealed crystalline SeNPs of ~25 nm stabilized by phytochemicals. SeNPs exhibited strong antioxidant activity (>75% inhibition), anti-inflammatory efficacy comparable to diclofenac sodium, and significant antimicrobial zones of inhibition at 100 μg/mL. Cytotoxicity was minimal at therapeutic doses, whereas zebrafish embryonic studies indicated dose-dependent toxicity at higher concentrations.

Conclusion: Green-synthesized SeNPs demonstrate potent antioxidant, anti-inflammatory, and antimicrobial properties, with good biocompatibility at therapeutic concentrations. Their eco-friendly synthesis and biological efficacy suggest strong potential as sustainable therapeutic agents, warranting further in vivo studies and clinical translation.

Downloads

Download data is not yet available.

Author Biography

REVATHI S, Department of Biochemistry, Theivanai Ammal College for Women (Autonomous), Affiliated to Annamalai University, Villupuram, Tamil Nadu, India

Department of Biochemistry

References

1. Hernández-Díaz JA, Garza-García JJ, León-Morales JM, Zamudio- Ojeda A, Arratia-Quijada J, Velázquez-Juárez G, et al. Antibacterial activity of biosynthesized selenium nanoparticles using extracts of Calendula officinalis against potentially clinical bacterial strains. Molecules. 2021 Sep 30;26(19):5929. doi: 10.3390/molecules26195929, PMID 34641478

2. Khudier MA, Hammadi HA, Atyia HT, Al-Karagoly H, Albukhaty S, Sulaiman GM, et al. Antibacterial activity of green synthesized selenium nanoparticles using Vaccinium arctostaphylos (L.) fruit extract. Cogent Food Agric. 2023 Dec 31;9(1):2245612. doi: 10.1080/23311932.2023.2245612

3. Muhammed RA, Mohammed S, Visht S, Yassen AO. A review on development of colon targeted drug delivery system. Int J Appl Pharm. 2024;16(2):12-27. doi: 10.22159/ijap.2024v16i2.49293

4. Nagalingam M, Rajeshkumar S, Balu SK, Tharani M, Arunachalam K. Anticancer and antioxidant activity of Morinda citrifolia leaf mediated selenium nanoparticles. J Nanomater. 2022;2022(1):2155772. doi: 10.1155/2022/2155772

5. Sentkowska A, Pyrzyńska K. The influence of synthesis conditions on the antioxidant activity of selenium nanoparticles. Molecules. 2022 Apr 12;27(8):2486. doi: 10.3390/molecules27082486, PMID 35458683

6. Tendenedzai JT, Chirwa EM, Brink HG. Harnessing selenium nanoparticles (SeNPs) for enhancing growth and germination, and mitigating oxidative stress in Pisum sativum L. Sci Rep. 2023 Nov 21;13(1):20379. doi: 10.1038/s41598-023-47616-5, PMID 37989844

7. Nath D, Kaur L, Sohal HS, Malhi DS, Garg S, Thakur D. Application of selenium nanoparticles in localized drug targeting for cancer therapy. Anti-Cancer Agents Med Chem. 2022 Aug 4;22(15):2715-25. doi: 10.2 174/1871520622666220215122756, PMID 35168523

8. Xia Y, Chen Y, Hua L, Zhao M, Xu T, Wang C, et al. Functionalized selenium nanoparticles for targeted delivery of doxorubicin to improve non-small-cell lung cancer therapy. Int J Nanomedicine. 2018 Oct 30;13:6929-39. doi: 10.2147/IJN.S174909, PMID 30464451

9. Khan AK, Kousar S, Tungmunnithum D, Hano C, Abbasi BH, Anjum S. Nano-elicitation as an effective and emerging strategy for in vitro production of industrially important flavonoids. Appl Sci (Basel). 2021 Feb 14;11(4):1694. doi: 10.3390/app11041694

10. Haddadian A, Robattorki FF, Dibah H, Soheili A, Ghanbarzadeh E, Sartipnia N, et al. Niosomes-loaded selenium nanoparticles as a new approach for enhanced antibacterial, anti-biofilm, and anticancer activities. Sci Rep. 2022 Dec 19;12(1):21938. doi: 10.1038/s41598-022-26400-x, PMID 36536030

11. Palani B, Vajjiravelu R, Shanmugam R, Jayakodi S. A comprehensive review of traditional medicinal plants and their role in ovarian cancer treatment. S Afr J Bot. 2025 Jun 1;181:426-45. doi: 10.1016/j. sajb.2025.04.019

12. Puri A, Mohite P, Ansari Y, Mukerjee N, Alharbi HM, Upaganlawar A, et al. Plant-derived selenium nanoparticles: Investigating unique morphologies, enhancing therapeutic uses, and leading the way in tailored medical treatments. Mater Adv. 2024;5(9):3602-28. doi: 10.1039/D3MA01126G

13. Vajjiravelu R, Palani B, Shanmugam R, Jayakodi S. Bioinspired nanoparticles mediated from bioactive plants and their therapeutic application in liver cancer. Biomed Mater Devices. 2025 May 21;191:1-6. doi: 10.1007/s44174-025-00361-x

14. Vahdati M, Tohidi Moghadam T. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci Rep. 2020 Jan 16;10(1):510. doi: 10.1038/ s41598-019-57333-7, PMID 31949299

15. Tharani M, Rajeshkumar S, Al-Ghanim KA, Nicoletti M, Sachivkina N, Govindarajan M. Terminalia chebula-assisted silver nanoparticles: Biological potential, synthesis, characterization, and ecotoxicity. Biomedicines. 2023 May 18;11(5):1472. doi: 10.3390/ biomedicines11051472, PMID 37239143

16. Shahabadi N, Zendehcheshm S, Khademi F. Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and cyt c serum proteins. Biotechnol Rep (Amst). 2021 Jun;30:e00615. doi: 10.1016/j.btre.2021. e00615, PMID 33948440

17. Bartosiak M, Giersz J, Jankowski K. Analytical monitoring of selenium nanoparticles green synthesis using photochemical vapor generation coupled with MIP-OES and UV-vis spectrophotometry. Microchem J. 2019 Mar;145:1169-75. doi: 10.1016/j.microc.2018.12.024

18. Xu X, Pan Y, Liu X, Han Z, Chen S. Constructing selenium nanoparticles with enhanced storage stability and antioxidant activities via conformational transition of curdlan. Foods. 2023 Jan 27;12(3):563. doi: 10.3390/foods12030563, PMID 36766092

19. Shanmugam R, Munusamy T, Jayakodi S, Al-Ghanim KA, Nicoletti M, Sachivkina N, et al. Probiotic-bacteria (Lactobacillus fermentum)- wrapped zinc oxide nanoparticles: Biosynthesis, characterization, and antibacterial activity. Fermentation. 2023;9(5):413. doi: 10.3390/ fermentation9050413

20. Chen W, Yue L, Jiang Q, Xia W. Effect of chitosan with different molecular weight on the stability, antioxidant and anticancer activities of well-dispersed selenium nanoparticles. IET Nanobiotechnol. 2019 Feb;13(1):30-5. doi: 10.1049/iet-nbt.2018.5052, PMID 30964034

21. Bradley Z, Coleman PA, Courtney MA, Fishlock S, McGrath J, Uniacke- Lowe T, et al. Effect of selenium nanoparticle size on IL-6 detection sensitivity in a lateral flow device. ACS Omega. 2023 Mar 7;8(9):8407-14. doi: 10.1021/acsomega.2c07297, PMID 36910974

22. Shanmugam R, Tharani M, Abullais SS, Patil SR, Karobari MI. Black seed assisted synthesis, characterization, free radical scavenging, antimicrobial and anti-inflammatory activity of iron oxide nanoparticles. BMC Complement Med Ther. 2024 Jun 20;24(1):241. doi: 10.1186/ s12906-024-04552-9, PMID 38902620

23. Tabibi M, Aghaei S, Amoozegar MA, Nazari R, Zolfaghari MR. Characterization of green synthesized selenium nanoparticles (SeNPs) in two different indigenous halophilic bacteria. BMC Chem. 2023 Sep 16;17(1):115. doi: 10.1186/s13065-023-01034-w, PMID 37716996

24. Chen W, Cheng H, Xia W. Progress in the surface functionalization of selenium nanoparticles and their potential application in cancer therapy. Antioxidants (Basel). 2022 Sep 30;11(10):1965. doi: 10.3390/ antiox11101965, PMID 36290687

25. Sans-Serramitjana E, Obreque M, Muñoz F, Zaror C, Mora ML, De Viñas M, et al. Antimicrobial activity of selenium nanoparticles (SeNPs) against potentially pathogenic oral microorganisms: A scoping review. Pharmaceutics. 2023 Aug 31;15(9):2253. doi: 10.3390/ pharmaceutics15092253, PMID 37765222

26. Filipović N, Ušjak D, Milenković MT, Zheng K, Liverani L, Boccaccini AR, et al. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Front Bioeng Biotechnol. 2021 Jan 25;8:624621. doi: 10.3389/ fbioe.2020.624621, PMID 33569376

27. Rajeshkumar S, Jayakodi S, Tharani M, Alharbi NS, Thiruvengadam M. Antimicrobial activity of probiotic bacteria-mediated cadmium oxide nanoparticles against fish pathogens. Microb Pathog. 2024 Apr;189:106602. doi: 10.1016/j.micpath.2024.106602, PMID 38408546

28. Cittrarasu V, Kaliannan D, Dharman K, Maluventhen V, Easwaran M, Liu WC, et al. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci Rep. 2021 Jan 13;11(1):1032. doi: 10.1038/s41598-020-80327-9, PMID 33441811

29. Mekkawy AI, Fathy M, Mohamed HB. Evaluation of different surface coating agents for selenium nanoparticles: Enhanced anti-inflammatory activity and drug loading capacity. Drug Des Devel Ther. 2022 Jun 13;16:1811-25. doi: 10.2147/DDDT.S360344, PMID 35719212

30. Sentkowska A, Konarska J, Szmytke J, Grudniak A. Herbal polyphenols as selenium reducers in the Green synthesis of selenium nanoparticles: Antibacterial and antioxidant capabilities of the obtained SeNPs. Molecules. 2024 Apr 9;29(8):1686. doi: 10.3390/molecules29081686, PMID 38675506

31. Parthasarathy PR, Shanmugam R, Varshan I. In vitro anti-diabetic activity of pomegranate peel extract-mediated strontium nanoparticles. Cureus. 2023 Dec 30;15(12):e51356.

32. Yuan Q, Xiao R, Afolabi M, Bomma M, Xiao Z. Evaluation of antibacterial activity of selenium nanoparticles against food-borne pathogens. Microorganisms. 2023 Jun 7;11(6):1519. doi: 10.3390/ microorganisms11061519, PMID 37375021

33. Rehman A, John P, Bhatti A. Biogenic selenium nanoparticles: Potential solution to oxidative stress mediated inflammation in rheumatoid arthritis and associated complications. Nanomaterials (Basel). 2021 Aug 5;11(8):2005. doi: 10.3390/nano11082005, PMID 34443836

34. Sasidharan I, Menon AN. Comparative chemical composition and antimicrobial activity fresh & dry ginger oils (Zingiber officinale Roscoe). Int J Curr Pharm Res. 2010;2(4):40-3.

35. Rani AP, Archana N, Teja PS, Vikas PM, Sekaran MS. Antimicrobial activity of medicinal plants. Int J Appl Pharm. 2010;2(3):15-21.

Published

07-12-2025

How to Cite

SURIYA M, et al. “BIOMEDICAL APPLICATION OF SELENIUM NANOPARTICLES SYNTHESIZED USING LINUM USITATISSIMUM AND WITHANIA SOMNIFERA HERBAL FORMULATION”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 12, Dec. 2025, pp. 120-3, doi:10.22159/ajpcr.2025v18i12.56260.

Issue

Section

Original Article(s)