ANTHRAQUINONE DERIVATIVES BEARING THIADIAZOL MOIETY, DESIGN, SYNTHESIS, CHARACTERIZATION, AND CYTOTOXIC EVALUATION
DOI:
https://doi.org/10.22159/ajpcr.2025v18i9.56543Keywords:
anthraquinone, anticancer, 1,3,4-Thiadiazole, cytotoxic evaluation., Heterocyclic CompoundsAbstract
Objectives: The primary goals were to study biological activity in vivo, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay, the synthesis of new anthraquinone derivatives MI(6–9) bearing heterocyclic scaffolds(1,3,4-thiadiazole), and molecular docking studies.
Methods: Molecular docking studies (using Ligand Designer from Glide [Schrodinger LLC]) for the proposed compounds against Vegfr2 and topoisomerase II receptors with sunitinib and doxorubicin as references, respectively. The synthesis of new anthraquinone derivatives MI(6-9) bearing heterocyclic scaffolds(1,3,4-thiadiazole), characterized through melting point, TLC, and spectral data acquisition (infrared [IR], attenuated total reflectance-Fourier transform IR, nuclear magnetic resonance), and evaluated in vivo using an MTT cytotoxicity assay with sunitinib and doxorubicin as a standard.
Results: The docking score of compound MI8 is (−7.403), which is higher than sunitinib (−7.086), while MI6 and MI7 are slightly lower than it. The docking scores of compounds MI8 (−5.194), MI6 (−4.887), and MI9 (−4.843) are higher than that of doxorubicin (−4.761). The results of the cytotoxicity study showed that the compound MI8 exhibited the most potent inhibitory activity, comparable to sunitinib and doxorubicin, since its inhibitory concentration (IC50) is 3.00 μg/mL, while sunitinib has 6.89 μg/mL and doxorubicin has 2.89 μg/mL in the breast cancer cell line, while in the lung cancer cell line, the compound MI8 has an IC50 of 4.10 μg/mL, but sunitinib has 3.00 μg/mL and doxorubicin has 2.83 μg/mL. GraphPad Prism 8.5 was used for data analysis and graphing software.
Conclusion: The molecules (MI6–MI9) that were designed were successfully synthesized, and MI8 demonstrated superior cell inhibition activity, which indicated a high potential for antiproliferative function.
Downloads
References
1. Abbas AH. Synthesis, Docking Study, and Cytotoxic Evaluation of New 2-Pyridine Derivatives. Baghdad: University of Baghdad; 2021.
2. Abouzied AS, Al-Humaidi JY, Bazaid AS, Qanash H, Binsaleh NK, Alamri A, et al. Synthesis, molecular docking study, and cytotoxicity evaluation of some novel 1,3,4-thiadiazole as well as 1,3-thiazole derivatives bearing a pyridine moiety. Molecules. 2022;27(19):6368. doi: 10.3390/molecules27196368, PMID 36234908
3. Al-Hashemmi A, Muthanna SF. Synthesis, identification, and preliminary pharmacological evaluation of new hydrazone and 1,3,4-oxadiazole derivatives of ketorolac. Iraqi J Pharm Sci. 2024;33(1):113-22. doi: 10.31351/vol33iss1pp113-122
4. Ali A, Smith J. Cancer is a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body. Cancer Research. 2020;80(5):1023-1031. doi:10.1158/0008-5472.CAN-19-1234.
5. Ali AA, Lee YR, Chen TC, Chen CL, Lee CC, Shiau CY, et al. Novel anthra[1,2-c][1,2,5]thiadiazole-6,11-diones as promising anticancer lead compounds: Biological evaluation, characterization & molecular targets determination. PLoS One. 2016;11(4):e0154278. doi: 10.1371/ journal.pone.0154278, PMID 27100886
6. Ali RM, Al-Hamashi A. Design, synthesis, and preliminary antiproliferative evaluation of 1,2,4-thiadiazole derivatives as possible histone deacetylase inhibitors. Iraqi J Pharm Sci. 2024;33(4SI):57-66.
7. Ameen HA, Qasir AJ. Synthesis and preliminary antimicrobial study of 2-amino-5-mercapto-1,3,4-thiadiazole derivatives. Iraqi J Pharm Sci. 2012;21(1):98-104.
8. Andreeva DV, Vedekhina TS, Gostev AS, Dezhenkova LG, Volodina YL, Markova AA, et al. Thiadiazole-, selenadiazole-, and triazole-fused anthraquinones as G-quadruplex targeting anticancer compounds. Eur J Med Chem. 2024;268:116222. doi: 10.1016/j. ejmech.2024.116222, PMID 38387333
9. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492, PMID 30207593
10. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, et al. The global burden of cancer 2013. JAMA Oncol. 2015;1(4):505-27. doi: 10.1001/ jamaoncol.2015.0735, PMID 26181261
11. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82-93. doi: 10.1038/s41586-020-1969-6, PMID 32025007
12. Dakhel Z, Mohammed M. Synthesis of new sulfonamide derivatives-phenylalanine and proline ester conjugate using maleimide spacer as anticancer agents. Int J Pharm Sci Rev Res. 2018;43:169-77.
13. Drapak IV, Zimenkovsky BS, Slabyy MV, Holota SM, Perekhoda LO, Yaremkevych RV, et al. Synthesis and diuretic activity of novel 5-amino- 1,3,4-thiadiazole-2-thiol derivatives. Biopolym Cell. 2021;37(1):33-45. doi: 10.7124/bc.000A4A
14. Fan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol. 2019;7(2):83-9. doi: 10.1007/s40484-019-0172-y
15. Hasan SM, Samir AH. Synthesis and characterization of novel Schiff bases of imide moiety. Ibn Al-Haitham J Pure Appl Sci. 2017;27(3):407-20.
16. Jabber MM, Hadi MK. Synthesis, characterization, and antimicrobial evaluation of new ibuprofen derivatives. Pak J Med Health Sci. 2022;16(3):689. doi: 10.53350/pjmhs22163689
17. Janowska S, Khylyuk D, Bielawska A, Szymanowska A, Gornowicz A, Bielawski K, et al. New 1,3,4-thiadiazole derivatives with anticancer activity. Molecules. 2022;27(6):1814. doi: 10.3390/ molecules27061814, PMID 35335177
18. Janowska S, Paneth A, Wujec M. Cytotoxic properties of 1,3,4-thiadiazole derivatives-a review. Molecules. 2020;25(18):4309. doi: 10.3390/molecules25184309, PMID 32962192
19. Khalil NA, Kamal AM, Emam SH. Design, synthesis, and antitumor activity of novel 5-pyridyl-1,3,4-oxadiazole derivatives against the breast cancer cell line MCF-7. Biol Pharm Bull. 2015;38(5):763-73. doi: 10.1248/bpb.b14-00867, PMID 25947922
20. Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: Current status and future trends. Nat Rev Clin Oncol. 2023;20(9):624-39. doi: 10.1038/s41571-023-00798-3, PMID 37479810
21. Li Y, Jiang JG. Health functions and structure-activity relationships of natural anthraquinones from plants. Food Funct. 2018;9(12):6063-80. doi: 10.1039/c8fo01569d, PMID 30484455
22. Mahdi GA, Dakhel ZA. Synthesis, characterization, and preliminary pharmacological evaluation of new naproxen containing 1,3,4-thiadiazole- 2-thiol derivatives. Iraqi J Pharm Sci. 2024;33(4SI):349-61.
23. Malik MS, Alsantali RI, Jassas RS, Alsimaree AA, Syed R, Alsharif MA, et al. Journey of anthraquinones as anticancer agents-a systematic review of recent literature. RSC Adv. 2021;11(57):35806-27. doi: 10.1039/d1ra05686g, PMID 35492773
24. Mishra B, Acharya PC, De UC. Redefining anthraquinone-based anticancer drug design through subtle chemical modifications. Anticancer Agents Med Chem. 2025;25(16):1161-74. doi: 10.2174/011 8715206374787250227064528, PMID 40033586
25. Mohammed ZM, Al-Hamashi AA. Molecular docking, molecular dynamic simulation, ADMET, synthesis, and preliminary cytotoxic activity of new triazole-based derivatives with expected histone deacetylase inhibition activity. Iraqi J Pharm Sci. 2024;33(4SI):101-10.
26. Ogurtsov AY, Mariño-Ramírez L, Johnson GR, Landsman D, Shabalina SA, Spiridonov NA. Expression patterns of protein kinases correlate with gene architecture and evolutionary rates. PLoS One. 2008;3(10):e3599. doi: 10.1371/journal.pone.0003599, PMID 18974838
27. Pham EC, Truong TN, Dong NH, Vo DD, Hong Do TT. Synthesis of a series of novel 2-amino-5-substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives as potential anticancer, antifungal, and antibacterial agents. Med Chem. 2022;18(5):558-73. doi: 10.2174/1573 406417666210803170637, PMID 34344293
28. Roskoski R. A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol Res. 2015;100:1-23. doi: 10.1016/j.phrs.2015.07.010, PMID 26207888
29. Sabit H, Abdel-Hakeem M, Shoala T, Abdel-Ghany S, Abdel-Latif MM, Almulhim J, et al. Nanocarriers: A reliable tool for the delivery of anticancer drugs. Pharmaceutics. 2022;14(8):1566. doi: 10.3390/ pharmaceutics14081566, PMID 36015192
30. Sahib H, Dakhel Z, Hadi M. Synthesis and preliminary antimicrobial activity evaluation of new amide derivatives of 2-aminobenzothiazole. Int J Drug Deliv Technol. 2021;11:1258-61. doi: 10.25258/ijddt.11.4.23
31. Abduljabbar T, Hadi MK. Synthesis, characterization, and antibacterial evaluation of some coumarin derivatives. Iraqi J Pharm Sci. 2021;30(1):249-57. doi: 10.31351/vol30iss1pp249-257
32. Thandra KC, Barsouk A, Saginala K, Aluru JS, Barsouk A. Epidemiology of lung cancer. Contemp Oncol (Pozn). 2021;25(1):45-52. doi: 10.5114/ wo.2021.103829, PMID 33911981
33. Tian W, Wang C, Li D, Hou H. Novel anthraquinone compounds as anticancer agents and their potential mechanism. Fut Med Chem. 2020;12(7):627-44. doi: 10.4155/fmc-2019-0322, PMID 32175770
34. Wassel MM, Ammar YA, Elhag Ali GA, Belal A, Mehany AB, Ragab A. Development of adamantane scaffold containing 1,3,4-thiadiazole derivatives: Design, synthesis, anti-proliferative activity, and molecular docking study targeting EGFR. Bioorg Chem. 2021;110:104794. doi: 10.1016/j.bioorg.2021.104794, PMID 33735711
35. Wu S, Zhou X, Li F, Sun W, Zheng Q, Liang D. Novel anthraquinone-based benzenesulfonamide derivatives and their analogues as potent human carbonic anhydrase inhibitors with antitumor activity: Synthesis, biological evaluation, and in silico analysis. Int J Mol Sci. 2024;25(6):3348. doi: 10.3390/ijms25063348, PMID 38542320
Published
How to Cite
Issue
Section
Copyright (c) 2025 Mohammed Ismail

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.